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Abstract Context: Bug reports contain information that can be used by researchers and
practitioners to better understand the bug fixing process and to enable the estimation of the
effort necessary to fix bugs. In general, estimation models are built using the data (e.g.,
fixing time, severity, number of comments, number of attachments, and number of patches)
present in the reports of fixed bugs (i.e., the report final’s state). However, we claim that this
approach is not reliable in a real setting. Effort estimation is necessary for bug fix scheduling
and team allocation tasks, which happens closer to the bug report opening than its closing.
At that moment, the data available in the bug report is less informative than the data used
to build the model, which may lead to an unrealistic estimation. Objective: We propose a
new approach to estimate bug-fixing time, i.e., the time span between the moment the bug
was first reported until the bug is considered fixed. We consider not only the final state of
the bug report to create our estimation model but all the previous available states, different
from some previous studies that do not consider the reports’ updates. The concept of bug
report evolution is used to create a dataset containing all investigated report states. Method:
First, we verify how often the bug reports and their fields are updated. Next, we evaluate
our approach using different machine learning methods as a classification problem, with
distinct output configurations, and class balancing techniques. The experimental analysis is
performed with data from the JIRA issue tracking system of ten open-source projects. By
leveraging the best models (considering all possible configurations) for the different states
of the evolution of a bug report, we can assess whether there are significant differences in the
models’ estimation ability due to the report’s state. Results: We gathered evidence that the
reports’ fields are updated often, which characterizes the reports’ evolution, impacting the
building of bug-fixing estimation models. The models’ evaluation shows promising results
0.44 up to 0.85, precision values from 0.34 up to 0.74 and recall values from 0.62 up to
0.99, depending on the project. Conclusions: Our experiments show that field updates have
a meaningful impact on the models’ performance. Furthermore, we present a new approach

* Corresponding Author
E-mail: renan.vieira@alu.ufc.br
1Federal University of Ceará
Av. Humberto Monte, s/n - Pici, Fortaleza - CE, 60440-593
2State University of Ceará
Av. Dr. Silas Munguba, 1700 - Itaperi, Fortaleza - CE, 60714-903



2 Renan G. Vieira et al.

to deal with the bug report evolution by considering each report version as an independent
report. Finally, we also make available our dataset to the community.

Keywords Bug Report · Machine learning · Effort Estimation · Resolution Time
Estimation · JIRA Tracking Issue System

1 Introduction

Open-source software is widely adopted by end-users and companies around the world (Hauge
et al., 2010; Lenarduzzi et al., 2020). As they grow in size and complexity to meet new
requirements and needs, the goal of software quality assurance becomes increasingly more
challenging. Software developers and engineers use several tools to improve the software de-
velopment process. One of the most commonly used tool (Serrano and Ciordia, 2005; Baysal
et al., 2013) is the Issue Tracking System (ITS), a platform where any software issue 1 can
be registered and traced. There are many ITSs available, namely Bugzilla, YouTrack, and
Jira, among others.

Bugs are a particular type of issue that can hinder software quality. They can be resource-
consuming, leading to costs by order of billions per year and taking on average 50% of the
software developers’ time for finding and fixing them (Brady, 2013). Besides the bug being a
problem by itself, the whole process of triaging the bugs to be fixed is also a time-consuming
task. Many questions have been raised regarding bug issues on ITSs for a newly registered
bug report, such as “was this bug already registered?” (Lazar et al., 2014; Ebrahimi et al.,
2019), “who is the best person to fix this bug?” (Guo et al., 2011; Shokripour et al., 2015),
“is this a real bug?” (Herzig et al., 2013), “is this report good and does it have enough
information?” (Zimmermann et al., 2010), “what is its priority?” (Tian et al., 2015), and
“how much time is necessary to fix this bug?” (Zhang et al., 2013; Al-Zubaidi et al., 2017;
Habayeb et al., 2018).

Several researchers highlight the importance of being able to provide a bug resolution
time estimation. As pointed out by Al-Zubaidi et al. (2017), the reporters are probably in-
terested in knowing when a particular bug will be fixed, thus project managers may need
to provide an estimation time. In those cases, such estimations can be critical to their cost
planning and release management. Similarly, Habayeb et al. (2018) discuss that identifying
bugs that would require a long fixing time right at the beginning of the bug life cycle is use-
ful in several areas of the software quality process. This information would allow software
maintenance to prioritize their work, improving the development activities on such bugs.
The cost related to bugs are high, not just because finding and fixing faults increases the
development and testing cost, but also because of the consequences of field failures due to
these bugs (Hamill and Goseva-Popstojanova, 2017). Thus, the prediction of a bug resolu-
tion time plays a significant role in project management, since it supports resource allocation
and future release planning.

For software that uses an ITS, bug identification is generally recorded in the ITS itself.
Next, a bug triage happens, being mostly2 a manual collaborative step. In the triage, a bug
report will be examined to (i) indicate whether the report contains sufficient or duplicated
information, (ii) assign the bug’s severity and priority, and (iii) define who will be the person
responsible for fixing the bug (Ardimento et al., 2016), also known as the assignee. Other

1 An issue could represent a story, a bug, a task, or another issue type in the project.
2 In Mozilla’s (Firefox) case, it is partly automated, see https://hacks.mozilla.org/2019/04/teaching-

machines-to-triage-firefox-bugs/
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steps can be applied, such as identifying the component or version of the software affected
by the bug, which can occur between or after the presented ones. However, the reported
information and the decisions made in the triage step are error-prone. For instance, the study
of Hu et al. (2014) shows that 37%-44% of bugs have been re-assigned on bug reports of
Eclipse and Mozilla, respectively. In our previous study (Vieira et al., 2019), we identified
several changes and additions to bug reports during their life cycle when analyzing bug
reports from 55 open-source projects from Apache. For instance, we observed changes in a
report’s assignee on 54.63% of the bug reports, and description modifications on 18.16%, to
mention a few.

Thus, it is evident that reports should not be seen or analyzed only when they are
closed/resolved, where changes and updates in the reports may provide relevant informa-
tion regarding the bug fixing process. For instance, a bug report with a high priority, with an
experienced assignee associated with it and several comments and attachments will prob-
ably take less time to be closed than one with no assignee and zero comments. We argue
that those reports’ updates may serve as predictors regarding the reports’ resolution time.
Moreover, the same report in different states over its life cycle may not provide the same
information about the reported bug.

When a manager opens an ITS at a particular timeline for a specific software project,
the ITS may contain bug reports in several states: some recently opened, others are close to
resolution. The reports also present different complexity, priority, and overall information,
as the report fields are updated and changed. Thus, a tool capable of estimating the resolution
time for bug reports regardless of their state in the life cycle would be highly valuable. //In
////this////////paper,////we/////////////investigate////the///////////viability///of////////////providing//////such//a/////tool///to//////help///////////software////////////managers.
//In//////////contrast///to//////other//////////////approaches///in////the////////////literature, ////We//////////consider/////that/////bug/////////reports ////are/////////////changeable
////and/////////evolve,/////and///////such //////////changes //////may ////////impact/////////////estimation//////////models. This paper investigates the
viability of providing such a tool to help software managers while considering that bug
reports are changeable and evolve, and such changes may impact estimation models.

Given the scenario composed of the relevance of bug report resolution estimation and
the changeable and evolutionary nature of bug reports, we investigate three main questions.
We formalize our research questions below:

– RQ1: How frequently are the bug reports’ fields updated, and how do these updates
impact models for fixing time estimation? To answer this question, we first analyze
the most common reports’ fields updates of ten open-source projects. Next, we replicate
the seminal work by Zhang et al. (2013) (more details about why we select it on Section
2.3) using reports in different stages of their evolution. This way, we can verify if the
estimation models present any performance variation when we consider information
from the various possible states of the bug reports.

– RQ2: What is the most promising model configuration to build reliable models for
fixing time estimation considering bug reports at different stages of evolution? To
answer this question, we evaluate three different machine learning models trained with
data from ten Apache software projects. We look at the fixing time estimation capability
as a combination of two perspectives: i) data balance strategies ii) the estimated label
related to the resolution time window. To achieve that, we create a temporal dataset
based on our previous work (Vieira et al., 2019) and evaluate the estimation models
with several metrics.

– RQ3: To what extent is there a moment in the bug report life cycle where a res-
olution estimation is more precise? We already discussed (and will further detail in
Section 2) the idea of bug reports evolution. To tackle this question, we look at every



4 Renan G. Vieira et al.

report state as an individual and independent report. After training the models with such
an approach, we identify when in the report life cycle we obtain the best estimates. We
perform a posterior analysis and get a sense of the difference in the accuracy of the
estimations at the different steps of the bug life cycle.

We organize the remainder of the paper as follows. Section 2 deals with the investigation
methodology: dataset acquisition and creation, processing and description, and considered
machine learning methods. Section 3 presents the evaluated models results and address our
research questions. In Section 4 we draw the discussion regarding the results. Section 5 lists
the threats to the validity of this work. In Section 6 we highlight and draw a comparison
with selected related works. We conclude the paper in Section 7 with final thoughts and
considerations regarding the research.

2 Materials and Methods

This section describes the materials and methods used to address our research questions.
Subsections 2.1 and 2.2 explain the dataset used in all the investigation steps. In the Sub-
section 2.3, we present the necessary information to answer RQ1. Subsections 2.4 and 2.5
present the materials and methods to answer RQ2 and RQ3. We conclude this section de-
scribing in subsection 2.6 the process to create the train/test data partition to train the ma-
chine learning models. This paper is associated with a replication package3 with code, data,
figures and tables.

Foremost, we want to clarify that we use ‘Bug Report Resolution Time’ and ‘Bug-
fixing time’ as synonymous in the text. In this paper context, they mean the same thing:
the period when the bug was first reported until it is finally fixed. However, we know that
the ‘Report Resolution Time’ is more faithful with this definition, but ‘Bug-fixing time’ feels
more natural and usual in some contexts. Thus, we intercalate the terms depending on the
context and avoid repetition.

2.1 The JIRA Bug Report Dataset

In Vieira et al. (2019) we developed a dataset containing ten years of bug fixing activities
(and reports) from 55 open source projects from the Apache ecosystem. In the following,
we briefly describe the dataset. Additional details can be found in the original paper or the
replication package4.

The dataset comprises JIRA bug reports of projects in different system categories, such
as big-data, database, cloud, network-server, security, build-management, library, and machine-
learning. All selected reports were created and resolved/closed between 2009 and 2018. Four
categories of files were created: changelog, commentlog, commitlog, and snapshot.
Each project has one file of each category, and each category presents its own set of unique
attributes/fields. The snapshot files contain the reports as they are when resolved/closed.
The commentlog is the record of all comments made during a report’s life cycle. The
commitlog files record the data related to the commits responsible for solving the bug
report. The number of commits related to a certain bug report may vary. The maximum
number of commits for a certain bug report in the collected dataset is 98, and the median is

3 https://zenodo.org/record/5338495#.YS0bdVtv9H4
4 https://figshare.com/articles/Replication_Package_-_PROMISE_19/8852084
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1. The changelog files record all changes made in any of the reports’ fields during its life
cycle. In the Apache ecosystem, the JIRA issue tracking systems and the GitHub platform
are the data sources (JIRA for bug reports records and GitHub for the commits related to
these bug reports).

2.2 A Temporal Dataset of Bug-Fixing Activities and Reports

Using the dataset proposed in Vieira et al. (2019), we intend to use the bug report information
from the JIRA issue tracking system to answer the research questions. There are several
independent variables available in the reports, and they can be used to train machine learning
models. All the attributes are described and explained by Vieira et al. (2019), and the subset
that we use in our experiments are listed in Section 2, Table 4.

Most related work in the literature have been dealing with bug fixing time estimation as
a type of effort prediction. The usual effort to be estimated is time itself, but there are other
choices, such as person-hour or code churn. Therefore, the main idea is to model the task as
the necessary effort to fix the bug, i.e., the resource applied to change the code or remove
fractions of code that lead to bugs.

In the current work, we look to model the effort estimation as the bug report resolution
time. Thereby, we have as a dependent variable a derivative attribute from two of the report’s
fields. Thus, we define the Report Resolution Time (RRT) as the difference between the
report resolution date and the report creation date.

Definition 1 Let CD be the report’s Creation Date and let RD be the report’s Resolution
Date. The variable RRT, i.e. the Report Resolution Time, is defined as RRT = RD - CD.

The dataset original structure proposed by Vieira et al. (2019), as it is, limits the potential
of applicability and confidence of possible RRT estimations. It is crucial to notice that the
snapshot files contain the bug reports in their final state, i.e., the values of their fields at the
moment when they are closed. The idea is that if one uses the dataset as presented to estimate
RRT, it may lead to optimistic estimations because the snapshot file contains information of
the last state. Hence, the report features values may contain information not available when
performing the report triage in its initial state. For the rest of this paper, the state of a bug
report will be discussed more often. Hence, we formally define the state of a bug report
below.

Definition 2 A bug report’s state is comprised of its attributes’ set values in a given moment
of the life cycle, right after one or more of its attributes are updated (deleted, changed, or
added). The report initial state is the set of its attributes’ values right after its creation. The
report’s final state is the set of its attributes’ values right after the report is resolved/closed.
The report’s intermediate states are the states between the initial and final state.

Since the snapshot files only contain the final state of each report, it is not logical
to build RRT predictive models using only the reports’ final state, once they only provide
data related to the report’s resolution. For instance, the number of comments and their top
words are cumulative attributes that change and increase during discussions made by the
developers. It would be desirable to have a management tool that estimates the effort for
intermediate reports’ states to ensure that for each state exists an associated RRT.

The complete dataset, as proposed by Vieira et al. (2019), does not contain all states of
each report. However, it provides the necessary information to obtain them. Every state of
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each report can be re-created from the three other files of the dataset: snapshot, changelog
and commentslog. We wrote a Python script that, for each report in the snapshot file,
re-creates the report’s state for every change and update that ever happens in the report’s
life cycle. Fig. 1 summarizes such a re-creation process. The correspondent pseudo-code
is presented in Algorithm 1 and described as follows. In Line 1, we define a structure to
store all the reports’ states re-created by the script. In Line 2, we get each final report state
at a given time from the snapshot.csv file to re-create its previous states. In Line 3, we
include the selected report state into the temporal_dataset structure since it is the final
state report. In Lines 4 and 5, we get all the changes and comments corresponding to the
current report. In Line 6, we group the report fields’ changes and comments additions that
co-occur or occur with a small difference in time (5 seconds) in the same structure and call
it an update. Each update is what defines the difference between two states. In Line 7, we
order the updates by date and time in a descending way, so the last updates are on the top of
the structure. Hence, we are re-creating the states in decreasing order (from the final state
report to the initial state report). We start the process by using the final report state sn (given
at Line 2), where n represents the number of states that the report has. Next, we re-create
the previous report states down to the initial state (sn−1,sn−2, ...,s1). In Line 8, we perform
a simple attribution to set the current state to be used to re-create the previous state. In Line
9, we go through each report update to re-create the previous report states. In Line 10, a new
report state is re-created. A new report state si−1, is re-created using the current state report
si and the current update variable from Line 9. This method undoes the updates (registered
in the update variable) that made the report goes from its state si−1 to its state si. In Line
11, we include the recently re-created report state in the temporal_dataset. In Line 12,
we update the last created report state to be used to build the previous report state. In Line
15, we add a new column RRT to the dataset, which is calculated as detailed in Definitions
1 and 3.

Algorithm 1 Temporal Reports Dataset Builder Script
Require: snapshot.csv,changelog.csv,commentlog.csv
1: temporal_dataset = []
2: for final_report_state in snapshot.csv do
3: temporal_dataset.append(final_report_state)
4: comments = get_comments_by_key(final_report_state.key) #from commentlog.csv
5: changes = get_changes_by_key(final_report_state.key) #from changelog.csv
6: group_of_updates = group_by_datetime(comments, changes)
7: group_of_updates = group_of_updates.order_by_datetime()
8: current_state = final_report_state
9: for update in group_of_updates do

10: new_state = delta_state(current_state, updates)
11: temporal_dataset.append(new_state)
12: current_state = new_state
13: end for
14: end for
15: temporal_dataset = calculates_RRT(temporal_dataset)
16: return temporal_dataset

Here, we want to highlight a crucial aspect to understand our approach. In the temporal_dataset,
we have several bug reports in different states. From now on, to train the machine learning
models, we will consider every report, regardless of its state, as an independent report.
When we create the temporal_dataset, we can use every report (initial, intermediate, or
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Fig. 1: The Temporal Dataset of Bug-Fixing Activities and Reports Creation Process.

final report states) as individual patterns to train machine learning models. We argue that if
the actual report field values are enough to predict when it will be closed/resolved, the mod-
els will provide different estimations with different reports’ states. Every report state has its
attributes (fields) values and an RRT value associated. Thus, we expand the idea of RRT to
each report state as follows, already using the idea of a report state as an independent report.

Definition 3 The calculation of each report RRT depends on its state type (as seen in Defi-
nition 2):

– The RRT of an Inital State Bug Report is calculated as the RRT established on Defini-
tion 1.

– The RRT of an Intermediate State Bug Report is calculated as follows: let ri be a
Intermediate State Bug Report, with i indicading the state that this report represents.
The existence of ri implies that a previous report state r(i−1) exists, which can be another
Intermediate State Bug Report or an Inital State Bug Report. For ri to exist, a set of
fields in report state r(i−1) was updated at some moment of the bug report life cycle. Let
the Last Update Date (LUD) be the update moment. The RRT of an Intermediate State
Bug Report is defined as RRT = RD - LUD.

– The RRT of a Final State Bug Report is defined as an Intermediate State Bug Report.
However, it has a particularity: the LUD value represents the moment when the report
is closed (i.e., there is a change of the status to closed/resolved). Thus, if LUD = RD,
then RRT = 0.

The above definition can be interpreted as a simple variation of Definition 1: every time
the report is updated, a new report (state) is created. Hence, the LUD can be seen as the CD
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Fig. 2: Bug reports resolution time.

of a new state report. Another way to look at the RRT calculation is that a bug report RRT
is the time that will take to resolve the current report state. Fig. 2 summarizes the definition.

2.3 Bug Reports’ Fields Updates and Zhang et al. (2013)’s Work Replication

For the bug reports’ fields updates analysis, we use the changelog.csv file of each project
to list the fifteen most common fields updates. We also verify how often previously pro-
posed approaches to the report resolution estimation task use those attributes. We select the
following related work: Zhang et al. (2013), Assar et al. (2016), Al-Zubaidi et al. (2017)
and Habayeb et al. (2018). Those and other related papers that deal with bug-fixing time
estimation are summarized in Section 6. The approaches mentioned above are also candi-
dates to be compared with our approach, using temporal dataset. The main reason to select
them are: (i) the similarity with our approach and (ii) the impact factors of their publication
site. However, three of them present some shortcomings when analyzed. Assar et al. (2016)
conclude that their approach does not present good results and is not applicable. Al-Zubaidi
et al. (2017) models the problem as a regression task, while we model it as a classification
task. The work by Habayeb et al. (2018) uses several attributes that we cannot calculate due
to dataset differences. Hence, we only consider the work by Zhang et al. (2013) as a com-
parison baseline. Nevertheless, we still consider the other three works when analyzing the
field updates.

The work developed by Zhang et al. (2013) uses a KNN (K-Nearest Neighbors algo-
rithm) with a set of standard report’s attributes. Table 1 lists their names, descriptions, and
if it is present or not in the dataset proposed in our previous study (Vieira et al., 2019).

We only use a subset of the original attributes, as our dataset does not contain all of
them, as shown in Table 1. This is a limitation of the JIRA platform that does not provide
these missing attributes by default. In the data pre-processing step, the Submitter and Owner
are encoded using the one-hot encoding. The work by Zhang et al. (2013) uses the standard
Euclidean distance for most of the attributes in the KNN algorithm, except for the Priority,
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Table 1: Attributes used by Zhang et al. (2013).

Attribute Name Description Present or Equivalent on Our Dataset

Submitter The bug report submitter. Equivalent to Reporter
Owner The developer who is responsible for resolving the bug Equivalent to Assignee

Severity The severity of a bug report No
Priority The priority of a bug report Yes

ESC Indicator of whether the bug is reported by end users or by the QA team. No
Category The category of the problem No
Summary A short description of the problem. Yes

Severity, and Summary, which have specific representations. The JIRA platform, by default,
considers five levels of priority: Trivial, Minor, Major, Critical, and Blocker. They are en-
coded in an ordinal way, with numbers from 1 to 5. The Summary field is a set of words
after the removal of stopwords. Hence, based on the baseline work, the functions used to
compute the difference between two priorities, dp(Pa,Pb), and two summaries, ds(Sa,Sb),
are given by

dp(Pa,Pb) = |Pa −Pb|×0.2. (1)

ds(Sa,Sb) = 1− |Sa ∩Sb|
|Sa ∪Sb|

. (2)

Both Equations 1 and 2 are adaptations from the work by Zhang et al. (2013). Equation
1 was adjusted because the original paper’s projects have four priority levels, while in the
JIRA platform, the reports have five. The function represents a weighted distance between
two priorities (e.g. Trivial bug reports are closer to minor than to Blocker ones). In Equation
2, the original paper uses another set of words WC in the equation. They represent the set of
standard words extracted from pre-defined category labels, but the text does not detail how
those words are selected. Hence, we chose to remove it as both proposals (the original and
Equation 2) have the same idea to measure the text similarity.

There are four attributes used to train the models using the baseline approach, and we
call them Set 1. We also define a second set of attributes, Set 2, composed by eleven at-
tributes. This Set 2 is similar to those we use in our approach. We use those new attributes
to verify if they could improve the results. Concomitantly, it also provides a more fair way
to compare our approach to the baseline. The Table 2 presents the list of attributes for each
Set.

Table 2: Description of the two Sets of attributes used in the Baseline approach

Set of Attributes List of Features
Set 1 Summary, Priority, Reporter, and Assignee

Set 2
Summary, Priority, Reporter, Assignee, Comments,
Description, NoAffectsVersions, NoComponents,

NoAttachments, TotalLinks, and NoAttachedPatches

We draw three experiments for each set of attributes to test our hypotheses using the
baseline approach (Zhang et al., 2013). 1) In the first experiment, we train and test using
only the final state reports (EXP1); 2) in the second experiment, we train and test using
only the initial state reports (EXP2); 3) in third experiment, we train using final state reports
and test with initial state reports (EXP3). In the first and second experiments, we intend
to verify if the results are different depending on the state used to train the model. We
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want to verify how the information difference between initial and final reports impacts the
models’ performance with these two experiments. The hypothesis is that the last report state
contains more information, and the models trained with them (EXP1) may provide better
results than the models trained with the initial states reports (EXP2). They also provide a
baseline method to compare with our approach. For the third experiment, given that there
is a difference depending on the state used to train the model, we want to verify if such
a scenario is still applicable in practice (i.e. it does not matter to train using the last state
reports as long as the models are able to estimate good results using the initial reports).
It is worth noting that the RRT as established in Definition 3 is not used in this round of
experiments. The RRT is independent of the state (initial or final), being the actual RRT as
established in Definition 1. Also, to avoid ambiguity, we highlight that the three EXP use
the same train/test splits and sizes. For each project, we first created a 5-fold partition using
the reports ID (the unique identifier number, the key provided by the Jira ITS when the bug
is reported). We do not look at the report features at this data partition step. For each report,
through its unique ID, we recovered the values of the attributes to train and test the models
depending on how each EXP is defined. We discuss and describe this process at length in
subsection 2.6.

For each one of the ten projects dataset, we train the models for each experiment setting
and calculate the average accuracy and f-measure by considering a 5-fold cross-validation.
The work Zhang et al. (2013) uses the concept of a time unit to separate the reports
between two classes. A project’s time unit is the median of its report resolution time. The
original approach presented by Zhang et al. (2013) tests five different thresholds to split the
data: 0.1, 0.2, 0.4, 1, and 2-time units. For instance, consider a hypothetical project with a
median report resolution time of seven days. If we train a model by splitting the data with the
0.1-time unit, the model predicts if the report will take more than 0.7 days (approximately
16,8 hours) to be resolved. Splitting the data with the 0.2-time unit predicts if the report
will take more than 1.4 days (approximately 33,6 hours) to be resolved. When considering
the 1-time unit, if a given report will take more than seven days to be resolved, and so on.
We include in the list of thresholds to split the data five and ten days thresholds. We do
this because these are the values we use to split the data in our approach (more on why we
choose these thresholds can be found in subsection 2.5). Thus, it will help us to compare the
solutions (our approach and the baseline approach).

2.4 Preprocessing steps on the ‘Temporal Dataset‘ to apply our approach

For our approach, we choose to use the temporal dataset process creation on 10 of the 55
projects from the original dataset by Vieira et al. (2019), namely: Hadoop Core, Hadoop
Yarn, Hadoop HDFS, Hadoop MapReduce, Lucene, Flink, Solr, Zookeeper, Kafka and
Spark. The project selection criteria are project maturity (years of development) and the
number of bug reports. After applying the previously described script to each of the project’s
datasets we have the data to train the machine learning models. A few aspects guide us to se-
lect these ten specific projects. Each dataset project to be used in our approach increases the
time and computational power dramatically. Creating the temporal dataset of each project is
time-consuming. Hence, the temporal datasets’ size considerably increases compared to the
snapshot file, which contains only the final state report (see Table 3). This also increases the
time to train the models, as we train different machine learning models in different config-
urations (to be explored in Subsection 2.5). We had to compromise the number of projects
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to fit the computational power we had available. On the other hand, this number of projects
allows us to do a fine-grained analysis of the results as we did in the following sections.

We also perform 3 filters on the snapshot.csv file (the file that contains the final state
reports, used to create the Temporal Dataset) to remove reports that contain at least one
of the following characteristics: 1) no related commit; 2) RRT = 0; 3) reports with two
or fewer states. We argue that these reports do not represent the traditional bug workflow,
that would be: bug discovery, report the bug, the bug-fixing process being discussed and
documented in the report (with updates on the report), the report is closed/resolved and
associated with a commit that contains the code to fix the bug. An in-depth analysis would
be essential to characterize these reports with some anomalous behavior. However, we have
a few hypotheses. For instance, a report created and resolved/closed instantly (RRT = 0) was
probably registered only for documentation purposes. The reports without commit could be
reported by accident. Another hypothesis would be that one notices that the reported case is
not a bug, a duplicated or resolved one during the report triage. To minimize the chances of
using reports that may fall into one of these cases, we chose to use only the ones that present
strong evidence that has passed by a bug’s natural workflow.

To check the viability of these filters, we randomly selected 30 reports (in the subset of
removed reports by the filters) from each project for a total of 300 bug reports. We analyzed
each of them in the JIRA platform in its original format (raw data). We look for evidence
that the reports represent one of the cases we suggest: not a bug, duplicated or reported
by documentation purposes. We call these bugs non-traditional bug reports. Their counter-
part we call normal bugs. Considering all the 300 reports, we gathered evidence that 240 of
them falls into one of the cases: duplicated bug, not a bug, reported by documentation pro-
poses (already fixed), already fixed by previous versions, imported from another source (the
discussion and original report was made in GitHub or mail list, not in JIRA), stale bugs (re-
ported a long time ago and already fixed in posterior versions), reported with a solution (the
patch that solves the problem was uploaded in minutes after the report creation, between 2 to
5 minutes, indicating that the reporter founded the bug, creates the report and already upload
a patch, that eventually was accepted), typos and documentation bugs (that do not demands
a commit). The great majority of the normal bugs fall in the cases with reports with no com-
mit. In some cases like Hadoop Core, they are old bug reports (from 2008/2009), or there
was a comment indicating that the fixing commit was not associated. Finally, we provide a
complete table with the analyzed reports and a commentary about them in the replication
package.

Table 3 presents some of the dataset characteristics. The first column has the names of
the projects. The second, the number of reports on the original snapshot file, as proposed
by Vieira et al. (2019). In the third column, we have the number of reports after applying the
creation process, as described in Section 2.2. The fourth, fifth, and sixth columns show the
number of reports caught by the three filters explained above. “Selected Reports” shows the
number of unique reports selected from the snapshot.csv file. The last column presents
the total numbers of states created from the Selected Reports.

The original snapshot.csv file contains 53 attributes, but we only use a subset of
these alongside some attribute variations. Table 4 shows each of the 18 attributes we employ
and their description. We selected those attributes based on two reasons: 1) they are easy
to compute; 2) they are effortless attributes, which is ideal for a first proposal. Since the
final goal is a program that estimates the report resolution time at any moment of its life
cycle, the model could benefit from easy computing and acquiral of report features. From
a machine learning perspective, we usually train the initial models with simple compute
attributes. Afterward, we will try more complex models, algorithms and attributes. We also
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transform the textual fields ‘Comments’, ‘Description’, and ‘Summary’, in features using
Bag of Words (BoW) technique, and trained models logistic and neural networks models
using three different sets of features: i) only the textual information as BoW; ii) only the
ones presented in Table 4; iii) and a hybrid approach, where we use the combination of both
features groups. For all projects and models, the best results were acquired using only the
ones presented in Table 4 (these results can be found in the replication package). For future
works, we intend to perform a more detailed analysis of the textual fields and evaluate the
relevance of the textual fields with different Natural Language Processing techniques.

Table 3: Filtered Dataset Information

Project
No. of Reports
(snapshot file)

No. of Reports
(temporal dataset)

RRT = 0
No Commit
Associated

No. of States
≤ 2

Selected
Reports

All Reports States
(temporal dataset)

Flink 3317 31290 659 928 137 2188 (65.96%) 25915
Hadoop

Core
2861 44717 65 705 0 2116 (73.96%) 36794

Hadoop
HDFS

3214 55852 53 666 0 2525 (78.56%) 46845

Hadoop
Mapreduce

2210 34021 64 866 0 1311 (59.32%) 22967

Hadoop
Yarn

2090 41946 12 103 0 1983 (94.88%) 40355

Kafka 2404 21489 61 462 19 1891 (78.66%) 17952
Lucene 2004 21943 182 153 14 1671 (83.38%) 19935

Solr 2249 25101 161 255 32 1821 (80.96%) 22431
Spark 6380 49438 66 604 101 5640 (88.40%) 45127

Zookeeper 882 16823 22 107 4 755 (85.60%) 15384

2.5 Models training methodology

We choose three machine learning methods to create models using the temporal dataset: lo-
gistic regression, deep MultiLayer Perceptron (MLP), and Gaussian process. For the logistic
regression we use the sklearn5. For the Gaussian process model, we use the GPFlow6 im-
plementation. For the Deep MLP, we consider the Keras library7. All models were trained
using a 5-fold data partition to perform cross-validation. More details on how we perform
this partition in subsection 2.6.

We test different choices for two model configurations, namely: output format (i.e., the
way to estimate the RRT, y in machine learning terms); and how to deal with class imbalance
(to use or not minority class over-sampling or majority class under-sampling). For the output
format, we evaluate two ways to estimate the RRT: “two labels (threshold = 5 days)”, where
the reports are grouped by in two intervals: [0,5[, [5, inf]; and “two labels (threshold = 10
days)”, where the reports are grouped by in two intervals: [0,10[, [10, inf]. The numbers
inside the intervals are the real RRT calculated as explained in Definitions 1 and 3. The
idea to test two thresholds is to verify the model’s viability to help estimate in short or
medium/long-term releases. Seven and fourteen days seem to be a natural choice, as they
are the most common period sizes of sprints. We tested several thresholds (5, 7, 10, 14, and

5 https://scikit-learn.org/
6 https://www.gpflow.org/
7 https://keras.io/
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Table 4: Dataset features description.

Attribute Name Description Possible Values Addition Information

NoAttachedPatches
Number of patches

attached to the report
N Same idea of the original

NoAttachments
Number of files

attached to the report
N Same idea of the original

NoComments
Number of comments

in the report
N Same idea of the original

Priority Report priority label encoding

{1,2,3,4,5}, meaning,
respectivily, Trivial,

Minor, Major, Critical
and Blocker

Original priority field
values mapping of the
original dataset values;

Status
Inform the report status in

a one-hot-encoding representation.

{0,1}, the features are ‘Open’,
‘In Progress’, ‘Reopened’, ‘Resolved’,

‘Patch Available’ and ‘Closed’.

Status field one-hot-encoding
of the original dataset values;

NoAffectedVersions
Number of system versions

affected by the bug
N A simplification of the original

dataset “AffectsVersions” field.

HasAssignee
Inform if the report has
a associated assignee

{0,1}
Binary attribute derivated

from the “Assignee” field in
the original dataset.

NoComponents
Number of components

affected by the bug
N

Binary attribute derivated
from the “Components” field

in the original dataset.

NoDescriptionTopWords
Number of Top 1000 most frequent
words of a bug detailed description

N
A simplification of the original
dataset “DescriptionTopWords”

field.

UniqueNoDescriptionTopWords
Number of unique Top 1000 most
frequent words of a bug detailed

description
N

A simplification of the original
dataset “DescriptionTopWords”

field.

NoSummaryTopWords
Number of Top 1000 most
frequent words of a brief
one-line bug summary

N
A simplification of the original
dataset “SummaryTopWords”

field.

UniqueNoSummaryTopWords
Number of unique Top 1000 most
frequent words of a brief one-line

bug summary
N

A simplification of the original
dataset “SummaryTopWords”

field.

NoCommentsTopWords
Number of Top 1000 most frequent
words of a bug detailed summary

N
A simplification of the original
dataset “CommentsTopWords”

field.

UniqueNoCommentsTopWords
Number of Top 1000 most frequent
words of a bug detailed summary

N
A simplification of the original
dataset “CommentsTopWords”

field.

TotalLinks
The number of other

issue reports linked to the report.
N

A aggregation of the original dataset
“InwardIssueLinks” &

“OutwardIssueLinks” fields.

DSLU Days Since the Last report Update N

- Created on the temporal
dataset process creation.

- The report’s idle time between
a previous and a current state

NumberOfUpdates
Number of updated fields since

the last report state
N

- Created on the temporal
dataset process creation.

- Represents the number of features
with different values bettween
a previous and a current state

State Report State number N - Created on the temporal
dataset process creation.

Progress
Actual report state divided by the

number of report states
{0...1} Used in results analysis

ResolutionTimeInDays The report resolution time in days. N - Dependent variable that the
models try to predict;

15 days) in a previous round of experiments using logistic regression (the complete results
table can be found in the replication package). The results indicate that smaller thresholds
present better results than more significant thresholds. We choose five and ten days to present
the best results overall without losing the idea to verify the model’s viability to help estimate
in short or medium/long-term releases. Also, five and ten days can be seen as one or two
weeks in terms of business/working days. We show the label distribution for each project in
Table 5.
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Table 5: Labels Distribution

Threshold = 5 days Threshold = 10 days
[0, 5[ [5, inf] [0, 10[ [10, inf]

Flink 14769 11146 17814 8101
Hadoop Core 19867 16927 24137 12657

Hadoop HDFS 26173 20672 32005 14840
Lucene 14103 5832 15522 4413

Hadoop Mapreduce 12306 10661 14994 7973
Spark 26753 18374 32076 13051

Hadoop Yarn 21749 18606 27001 13354
Zookeeper 5643 9741 7134 8250

Kafka 9116 8836 11174 6778
Solr 11688 10743 13531 8900

We summarize our models as follows: We combine the three aforementioned models,
two ways to model the RRT, and four approaches to deal with the class imbalance (two
under-sampling methods, over-sampling or none), which results in 24 (3×2×4 = 24) clas-
sification models for each project.

We use the following rule to refer to each model: [model] [y_format] [balance_data]
where:

– model: ‘logreg’ for logistic regression, ‘gp’ for gaussian process and ‘dnn’ for deep
neural networks (deep MLP).

– y_format: ‘two_labels_5’ for the two intervals RRT estimation with threshold=5 and
‘two_labels_10’ for the two intervals RRT estimation with threshold=10.

– data: The use or not of class balancing strategies. OD means using the original data,
SMOTE (Chawla et al., 2002) implies the use of oversampling of minority classes. CC
implies the use of Cluster Centroids to under-sampling the majority classes, while RND
implies the use of random under-sampling of majority classes data points.

For instance, a model named ‘logreg_two_labels_5_SMOTE’ indicates a logistic re-
gression model with SMOTE used to over-sample the minority class, and used to predict if
a given report will take more or less than 5 days to be resolved/closed.

The machine learning methods parameters used to train the models are as follows. For
the logistic regression, we use the library default values. For the deep MLP, we tested a few
architectures and noticed that two hidden layers with 128 neurons each performed better.
For the gaussian process models, due to the dataset sizes, we use a stochastic variational
inference procedure (Hensman et al., 2013). For more details about the training process, we
refer the reader to the replication package, which contains all the models’ information.

2.6 The Train/Test Split Method

In this subsection, we explain in detail how we create the folds to train and test the models.
Initially, we have two rounds of experiments. The first one is the baseline approach, where
we train the data using the work of (Zhang et al., 2013), in three different reports’ states
scenarios (EXP 1, 2, and 3). The second one is our approach, where we use all states in
several machine learning configurations (models, class split days threshold, and data balance
strategies).
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Before any round of experiments, we split each data project in 5-folds. However, we
must respect two constraints when creating the train/test folds partitions:

– The different states (data points) of a report must be at the same fold partition (i.e., given
a report, all its states must be at train fold partition OR test fold partition, exclusively).

– Different reports have a different number of states, some with more updates and others
with fewer updates. We must monitor how reports with several states impact the mod-
els’ performance and avoid that groups of reports with several updates end up in the
same train or test split. This may cause the over-representation of a report to surpass the
influence in the model of reports with a fewer number of updates.

We use the following strategy to respect both restrictions:

– For each project, we first sort all bug reports by their number of states in non-decreasing
order. It gives us a list-like data structure with the reports with a higher number of
updates at the beginning of the structure and the ones with fewer updates at the end.

– We split the sorted list of reports into buckets of reports, each bucket containing five
reports maximum, following the order of reports presented in the list-like data structure.

– Each bucket index a report by a number k ∈ {1,2,3,4,5}. The index of the report indi-
cates the partition/fold where the report goes into.

Following this strategy, we attend to both restrictions and maintain the size of each
partition comparable. For ’Restriction 1’, when using 5-fold cross-validation to train the
models, a model k is trained with all folds but k, and it is tested with the fold k. Hence,
different states of the same report are never into distinct train/test folds; for ’Restriction 2’,
once we split the ordered report into buckets, each bucket contains a group of reports with
a similar number of updates. Hence, each fold contains an approximated representation of
different categories of reports (reports with several updates and the ones with fewer updates).
The size of each CV partition can be found in the replication package, where we show that
each fold has a comparable size. We summarize the process in Fig. 3, which contains a real
values example of the process applied to the project Spark.

3 Results

3.1 Field Changes Analysis and Zhang et al. (2013) replication (baseline)

Table 6 shows the most common field changes in bug reports of the ten projects we investi-
gate. Each column contains the information for a specific project, while each line represents
a feature in the bug reports. The values in the Table show percentile representation of all
project’s bug reports with at least one field update. The Table is presented as a simplified
heatmap, where the values relate to gray’s intensity in each cell, with four groups of values:
0-25%, 25-50%, 50-75%, and 75%-100%. Next to each field name, we indicate the related
work that uses the field (or some attribute derived from it) according to the following sym-
bols: ⋆ represents our approach; Zhang et al. (2013) ♦; Assar et al. (2016) •; Al-Zubaidi
et al. (2017) ■. We do not indicate the work by Habayeb et al. (2018) because their approach
does not use the fields’ values but their changes, as it uses a Hidden Markov Model.

The most common fields updates depend on the project. We notice that the fields Assignee,
Attachment, and Link, and are commonly updated. Other fields, such as Summary, Priority
and Description, are used in two or more approaches, but they have a lower number of
updates when compared to the previously mentioned fields. We consider several attributes
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0001    SPARK-4105        78
0002    SPARK-26265      69
0003    SPARK-13747      63
0004    SPARK-25206      61
0005    SPARK-4452        57
0006    SPARK-19644      46
0007    SPARK-23390      46
0008    SPARK-16321      46
0009    SPARK-3633        43
0010    SPARK-10474      43
....
5636    SPARK-3946          3
5637    SPARK-3952          3
5638    SPARK-2403          3
5639    SPARK-5840          3
5640    SPARK-2861          3

Report IDindex States

Bucket 1

1    SPARK-4105        78
2    SPARK-26265      69
3    SPARK-13747      63
4    SPARK-25206      61
5    SPARK-4452        57

1    SPARK-19644      46
2    SPARK-23390      46
3    SPARK-16321      46
4    SPARK-3633        43
5    SPARK-10474      43

Bucket 2

1    SPARK-3946          3
2    SPARK-3952          3
3    SPARK-2403          3
4    SPARK-5840          3
5    SPARK-2861          3

Bucket 1128

...

CV Partition 1

1    SPARK-4105        78
1    SPARK-19644      46
               ...
1    SPARK-3946          3

CV Partition 2

2    SPARK-26265      69
2    SPARK-23390      46
               ...
2    SPARK-3952          3

CV Partition 3

3    SPARK-13747      63
3    SPARK-16321      46
               ...
3    SPARK-2403          3

CV Partition 4

4    SPARK-25206      61
4    SPARK-3633        43
               ...
4    SPARK-5840          3

CV Partition 5

5    SPARK-4452        57
5    SPARK-10474      43
               ...
5    SPARK-2861          3

Fig. 3: The train/test 5-fold split method applied to project Spark.

Table 6: Top bug reports’ fields changes

Flink Hadoop
Core

Hadoop
HDFS

Hadoop
Mapreduce

Hadoop
Yarn Kafka Lucene Solr Spark Zookeeper

Assignee ⋆ ♦ 42.24% 51.28% 45.02% 53.08% 51.24% 50.00% 43.16% 62.21% 87.54% 67.01%
Attachment ⋆ 14.32% 95.77% 97.57% 93.94% 98.80% 34.23% 83.58% 74.70% 4.70% 81.07%
Component ⋆ 26.08% 22.96% 17.36% 16.56% 9.42% 5.40% 6.23% 9.69% 10.55% 9.75%

Description ⋆■ 14.50% 17.13% 19.66% 12.49% 23.35% 19.97% 9.53% 15.56% 28.01% 11.56%
Link ⋆ 11.28% 53.58% 52.30% 40.63% 45.12% 21.38% 17.96% 39.08% 25.03% 31.41%

Priority ⋆ ♦ 9.19% 11.15% 11.29% 14.03% 15.79% 12.15% 4.79% 7.24% 15.11% 14.40%
Summary ⋆ ♦ • 7.23% 21.71% 26.60% 14.30% 34.88% 10.73% 8.08% 16.10% 15.66% 9.41%

Version ⋆ 10.97% 30.55% 30.49% 30.72% 19.14% 10.32% 11.28% 14.05% 11.10% 20.52%

in our approach that are present in the most common field updates. This justifies our interest
in working with fields values of different moments of the reports’ life cycle.

Given that field updates occur in several bug reports, how do those changes impact the
time fix estimation models’ reliability? We address this question in the experiments de-
scribed in Subsection 2.3. Table 7 shows the obtained results. As follows, we recap the
experimental scenarios. 1) First experiment: we train and test using only the final state re-
ports (EXP1); 2) Second experiment: we train and test using only the initial state reports
(EXP2); 3) Third experiment: we train using final state reports and test with initial state re-
ports (EXP3). The first column in Table 7 indicates the threshold used to split the data into
two classes. The number in parentheses represents the time unit in days. The other three
columns show the accuracy and f-measure for the three data experiments. The best results
are in boldface. It is important to note that the classes are not balanced for all the models,
except when the time unit threshold is equal to one. Thus, the f-measure values are of
main concern. We tested several unit values (as presented in the baseline paper), but we only
show three of them due to space constraints. They are the unit values corresponding to the
5 and 10 days (the thresholds we use in our approach) and the 1 unit value, representing
each project’s RRT median value. For those interested in checking all the values, we refer
the reader to the replication package, where we present the values for all thresholds.
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Table 7: Baseline Results in different data scenarios: Attributes Set 1

EXP1 EXP2 EXP3
Threshold ACC F1 ACC F1 ACC F1

Flink
Unit_0.698 (5 days) 0.5658 0.6265 0.5740 0.6446 0.5603 0.6284
Unit_1 (7.17 days) 0.5791 0.5492 0.5645 0.5529 0.5476 0.5320
Unit_1.4 (10 days) 0.5736 0.4618 0.5759 0.4750 0.5521 0.4288

Hadoop Core
Unit_0.723 (5 days) 0.5387 0.5666 0.5539 0.5871 0.5586 0.6030
Unit_1 (6.92 days) 0.5312 0.4914 0.5355 0.5100 0.5487 0.5364
Unit_1.45 (10 days) 0.5614 0.4179 0.5591 0.4391 0.5605 0.4613

Hadoop HDFS
Unit_0.759 (5 days) 0.5901 0.6097 0.5968 0.6267 0.5949 0.6319
Unit_1 (6.58 days) 0.5945 0.5603 0.5881 0.5707 0.5909 0.5834
Unit_1.52 (10 days) 0.6067 0.4770 0.5976 0.4960 0.5885 0.4929

Kafka
Unit_0.638 (5 days) 0.6060 0.6580 0.6034 0.6629 0.5912 0.6586
Unit_1 (7.83 days) 0.5875 0.5595 0.6008 0.5916 0.5711 0.5647
Unit_1.28 (10 days) 0.5970 0.5189 0.6060 0.5556 0.5843 0.5283

Lucene
Unit_1 (1.79 days) 0.5464 0.5342 0.5368 0.5170 0.5368 0.5161
Unit_2.79 (5 days) 0.6242 0.3866 0.6074 0.3467 0.6206 0.3402
Unit_5.58 (10 days) 0.6708 0.2663 0.6786 0.2714 0.6882 0.2657

Mapreduce
Unit_0.55 (5 days) 0.6003 0.6663 0.6133 0.6869 0.5828 0.6627
Unit_1 (9.08 days) 0.5858 0.5525 0.5797 0.5678 0.5485 0.5173
Unit_1.1 (10 days) 0.5759 0.5238 0.5683 0.5384 0.5332 0.4804

Solr
Unit_0.591 (5 days) 0.5524 0.5982 0.5524 0.6037 0.5371 0.5926
Unit_1 (8.46 days) 0.5458 0.5199 0.5420 0.5255 0.5310 0.5121
Unit_1.18 (10 days) 0.5491 0.5012 0.5338 0.4923 0.5343 0.4864

Spark
Unit_1 (4.4 days) 0.5887 0.5573 0.5661 0.5458 0.5287 0.5668

Unit_1.14 (5 days) 0.5881 0.5320 0.5674 0.5184 0.5273 0.5467
Unit_2.27 (10 days) 0.6415 0.3918 0.6248 0.3771 0.5445 0.3909

Yarn
Unit_0.612 (5 days) 0.5951 0.6536 0.6001 0.6665 0.5789 0.6518
Unit_1 (8.17 days) 0.5754 0.5491 0.5724 0.5511 0.5573 0.5527
Unit_1.22 (10 days) 0.5890 0.5254 0.5855 0.5265 0.5633 0.5250

Zookeeper
Unit_0.227 (5 days) 0.7152 0.8165 0.7192 0.8188 0.7272 0.8283

Unit_0.455 (10 days) 0.6371 0.7212 0.6424 0.7289 0.6265 0.7264
Unit_1 (22 days) 0.5589 0.5340 0.5404 0.5361 0.5258 0.5147

A few points can be verified after analyzing the results. First, as the time unit increases,
the models’ performance decrease. Second, the results present little variation for the differ-
ent scenarios. Such behavior probably occurs because the attributes used in this approach
present a low field change rate. Priority varies between 4% and 16% and reporter does
not appear in the most common changes. Assignee (between 42% and 87%) and Summary
(between 7% and 34%) present higher change rates, but the low results variation may in-
dicate that they are not very relevant for the models. It is intriguing that for some projects,
such as Hadoop Core, Hadoop HDFS, and Spark, the best results are obtained in the EXP3
scenario. One hypothesis is that the low rate of the attributes’ updates may not significantly
impact the models’ results. Hence, to verify how the approach performs in a scenario with
attributes containing more historical updates, Table 8 shows the results using Set 2 (see Ta-
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Table 8: Baseline Results in different data scenarios: Attributes Set 2

EXP1 EXP2 EXP3
Threshold ACC F1 ACC F1 ACC F1

Flink
Unit_0.698 (5 days) 0.5813 0.6431 0.5731 0.6455 0.5425 0.5970
Unit_1 (7.17 days) 0.5777 0.5622 0.5731 0.5769 0.5553 0.5276
Unit_1.4 (10 days) 0.5823 0.5067 0.5795 0.5259 0.5603 0.4642

Hadoop Core
Unit_0.723 (5 days) 0.6077 0.6395 0.5728 0.6176 0.4976 0.4414
Unit_1 (6.92 days) 0.6011 0.5854 0.5685 0.5669 0.5208 0.4021
Unit_1.45 (10 days) 0.6040 0.5212 0.5756 0.4972 0.5496 0.3613

Hadoop HDFS
Unit_0.759 (5 days) 0.6701 0.6979 0.6059 0.6470 0.5438 0.5071
Unit_1 (6.58 days) 0.6653 0.6587 0.6016 0.6023 0.5117 0.2599
Unit_1.52 (10 days) 0.6562 0.5807 0.6048 0.5287 0.5671 0.2218

Kafka
Unit_0.638 (5 days) 0.6076 0.6555 0.6156 0.6776 0.5907 0.6540
Unit_1 (7.83 days) 0.6013 0.5790 0.6023 0.6064 0.5595 0.5606
Unit_1.28 (10 days) 0.6129 0.5504 0.6076 0.5792 0.5759 0.5251

Lucene
Unit_1 (1.79 days) 0.5907 0.5760 0.5326 0.5321 0.5153 0.4981
Unit_2.79 (5 days) 0.6362 0.4428 0.5901 0.3868 0.5948 0.3820
Unit_5.58 (10 days) 0.6834 0.3499 0.6427 0.2875 0.6409 0.3107

Mapreduce
Unit_0.55 (5 days) 0.6446 0.7066 0.6011 0.6810 0.4722 0.4370
Unit_1 (9.08 days) 0.6293 0.6095 0.5607 0.5587 0.5210 0.3295
Unit_1.1 (10 days) 0.6232 0.5873 0.5652 0.5506 0.5340 0.3283

Solr
Unit_0.591 (5 days) 0.6200 0.6710 0.5513 0.6084 0.5019 0.4953
Unit_1 (8.46 days) 0.5931 0.5935 0.5316 0.5273 0.5129 0.4340
Unit_1.18 (10 days) 0.5914 0.5748 0.5272 0.5045 0.5239 0.4285

Spark
Unit_1 (4.4 days) 0.5832 0.5607 0.5640 0.5588 0.5220 0.5524

Unit_1.14 (5 days) 0.5894 0.5431 0.5569 0.5275 0.5184 0.5320
Unit_2.27 (10 days) 0.6383 0.4160 0.5950 0.3837 0.5477 0.3818

Yarn
Unit_0.612 (5 days) 0.6289 0.6921 0.5683 0.6431 0.4962 0.5036
Unit_1 (8.17 days) 0.6132 0.6052 0.5527 0.5426 0.5119 0.4174
Unit_1.22 (10 days) 0.6092 0.5740 0.5507 0.5047 0.5179 0.3808

Zookeeper
Unit_0.227 (5 days) 0.7046 0.8033 0.7073 0.8085 0.6305 0.7426

Unit_0.455 (10 days) 0.6649 0.7409 0.6371 0.7267 0.5722 0.6573
Unit_1 (22 days) 0.5854 0.5808 0.5483 0.5507 0.5325 0.5039

ble 2). The experiment uses the same data unit splits and data scenarios but with different
attributes. The best results are highlighted in boldface.

With more attributes, the results are different. It is noticeable that the new attributes im-
prove the models’ results for all the cases. In all projects, there is a significant performance
drop in the EXP3 scenario. This shows that the initial and final reports are different enough
to drop the model’s performance, which indicates that bug reports’ updates impact the model
performance in all projects. In cases of smaller unit values in Hadoop Core, where the EXP3
presents better results than EXP1 and EXP2, the values are close. In all unit values, EXP1
and EXP2 consistently present considerable higher values compared to the EXP3.
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We can now address our first research question RQ1: How frequent are the bug re-
ports fields updates, and how these updates impact fixing estimation models? Answer:
We verify that bug reports fields’ updates are common across the ten different projects and
impact fixing estimation models in all projects we test. The use of inappropriate report states
(i.e. last states reports) to train the models can provide more optimistic results (between
0.01 to 0.4 in f-measures absolute values, depending on the project and threshold values)
than using the initial report states.

3.2 Training models with all bug reports states

Table 9 shows the five-folds average results for the best models configuration of each ma-
chine learning algorithm applied individually for each project, using the temporal dataset, re-
spectively: Flink, Hadoop Core, Hadoop HDFS, Lucene, Hadoop Mapreduce, Spark, Hadoop
Yarn, Zookeeper, Kafka, and Solr. The complete list of results with all 240 models config-
urations results can be found in the replication package. We evaluate the models using five
metrics: log-loss (LOGLOSS), accuracy (ACC), f1-measure score (F1), precision, and re-
call. We highlight the best results in boldface for each project and use them to perform the
analysis and answer the RQs.

Table 9: All projects Overall Best Results

Model ACC F1 PRECISION RECALL LOGLOSS
flink_logreg_two_labels_5_CC 0.5737 0.5800 0.5026 0.6863 0.6608
flink_gp_two_labels_5_SMOTE 0.6139 0.5530 0.5519 0.5621 0.6513
flink_dnn_two_labels_5_SMOTE 0.5852 0.5536 0.5164 0.6028 0.6587
hadoop_logreg_two_labels_5_CC 0.6054 0.5756 0.5691 0.5828 0.6648
hadoop_gp_two_labels_5_CC 0.5748 0.5727 0.5394 0.6534 0.6793
hadoop_dnn_two_labels_5_OD 0.6053 0.5157 0.5891 0.4643 0.6617
hdfs_logreg_two_labels_5_RND 0.6124 0.5661 0.5592 0.5733 0.6532
hdfs_gp_two_labels_5_CC 0.5725 0.5945 0.5134 0.7161 0.6968
hdfs_dnn_two_labels_5_SMOTE 0.5857 0.5425 0.5280 0.5590 0.6524
lucene_logreg_two_labels_5_RND 0.6114 0.4720 0.3921 0.5956 0.6581
lucene_gp_two_labels_5_RND 0.3786 0.4562 0.3131 0.8897 0.7545
lucene_dnn_two_labels_5_CC 0.5123 0.3620 0.2933 0.4741 0.9287
mapreduce_logreg_two_labels_5_CC 0.6100 0.6053 0.5702 0.6455 0.6529
mapreduce_gp_two_labels_5_CC 0.5569 0.6255 0.5295 0.8259 0.6894
mapreduce_dnn_two_labels_5_SMOTE 0.5945 0.5876 0.5566 0.6258 0.8741
spark_logreg_two_labels_5_RND 0.6416 0.6228 0.5450 0.7269 0.6159
spark_gp_two_labels_5_CC 0.5776 0.6284 0.4897 0.8784 0.6708
spark_dnn_two_labels_5_SMOTE 0.6530 0.6075 0.5635 0.6600 0.6412
yarn_logreg_two_labels_5_CC 0.5929 0.5707 0.5554 0.5881 0.6626
yarn_gp_two_labels_5_CC 0.6069 0.5677 0.5768 0.5762 0.6604
yarn_dnn_two_labels_5_SMOTE 0.5861 0.5832 0.5456 0.6321 0.6426
zookeeper_logreg_two_labels_5_OD 0.6557 0.7723 0.6639 0.9266 0.6306
zookeeper_gp_two_labels_5_OD 0.6317 0.7731 0.6339 0.9920 0.7034
zookeeper_dnn_two_labels_5_OD 0.6589 0.7764 0.6626 0.9404 0.6258
kafka_logreg_two_labels_5_CC 0.6426 0.6643 0.6175 0.7192 0.6144
kafka_gp_two_labels_5_RND 0.6337 0.6738 0.6052 0.7756 0.6288
kafka_dnn_two_labels_5_SMOTE 0.6351 0.6552 0.6105 0.7165 0.6300
solr_logreg_two_labels_5_CC 0.6000 0.6092 0.5718 0.6530 0.6650
solr_gp_two_labels_5_RND 0.5717 0.5466 0.5910 0.5920 0.6834
solr_dnn_two_labels_5_SMOTE 0.5998 0.5943 0.5758 0.6173 0.6769
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We acquire the best results by classifying the reports into two classes, with five days
threshold (Logistic regression, Neural Network, and Gaussian Process present similar met-
rics’ values for the majority of projects). As one can see, all the best models, expect Zookeeper,
use some data balance strategy. For six projects, the cluster-centroids under-sampling tech-
nique presents the best results, while for two other projects, the random under-sampling
presents the best values. For Hadoop HDFS, Hadoop Mapreduce, Kafka, and Spark projects,
Gaussian Process provides the best results, using an under-sampling approach. For Hadoop
Core, Flink, Lucene and Solr projects, the Logistic Regression using some under-sampling
approach presents the best results. The neural networks present best results for the projects
Yarn and Zookeeper, using an over-sampling technique and the original data, respectively.
Notably, some models metrics (accuracy, precision, recall or log-loss) can perform some-
what better than the selected models. Nevertheless, we prefer to choose the models with
higher f-measure due to the data imbalance nature (see Table 5).

It is also noticeable that, for the majority of the projects, the best results are not ideal for
a real-world application scenario, i.e., the models could not be used in the JIRA platform
to perform reasonable estimations with the presented accuracy of around 0.55 ∼ 0.65 and
f-measure around 0.47 ∼ 0.77. The only two projects that provide some interesting results
are Kafka and Zookeeper with f-measure higher than 0.67 and recall values above 0.77.

In this scenario, we can address our second research question RQ2: What is the most
promising model configuration to build reliable models for fixing time estimation con-
sidering bug reports at different stages of evolution? Answer: with our set of experiments
and data attributes, we verify a pattern where the most promising way to model the selected
projects bug reports, taking into account their evolution, is the five-day threshold binary
classification reports using an appropriate data balancing technique.

3.3 Models Performance by Group: Progress and Resolution Intervals

We use the following strategy to address RQ3. After the 5-fold training phase using the
temporal dataset, we obtain five models for each configuration. Then we use each test set
with its corresponding k-fold model after selecting the best model configuration, which gives
us five accuracy values, one for each test set. Next, we calculate the average model accuracy
for each group. We group the reports in two different ways: i) by their percentile of overall
resolution time progress, and ii) by six different intervals, namely, [0,5[, [5,10[, [10,15[,
[15,20[, [20,25[, and [25, inf] days. To calculate the report progress, we divide its current
state (equal to the number of reports/changes until its current state plus one) by the report
states’ total number, which gives a value between 0 and 1. Since we have the true resolution
interval of each report, the interval calculation group can be obtained directly. We expect
that such progress information will enable an overall view. The intervals provide us another
level of granularity since we classify reports with RRT ranges from a few days up to more
than a hundred days. For instance, there are reports with RRT values greater than 100 and
others with lesser than 5. Thus, the reports’ performance over specific RRT intervals may
indicate tendencies difficult to notice only from the progress information. Fig. 4 summarizes
the whole process. Figures 5 and 6 shows the accuracy values for each project for the two
reports groups. We use the models in boldface (i.e. the best models in terms of F1-measure
values) in the result’s Table 9, to perform the analysis.

The Fig. 5 shows, by project, how good the accuracy of the selected models (highlighted
in the results tables) is to estimate the report resolution time by its evolution progress. In
other words, the progress tells us how close the classified report state is to its initial state
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Fig. 4: Workflow to Reports RRT Evaluation by Progress and Interval

(when it was opened, with smaller evolution progress values) or to its final state (when it
was closed, higher evolution progress values). When we analyze the Fig. 5 we notice a par-
ticular behavior: the estimations start with values around 0.7 and 0.9 in progress 0.1, they
drop with the report progress increases and raise close to the progress 1. The only exception
is Lucene, which starts with an accuracy value above 0.6 and increases until reaching values
close to 0.8 at progress 1. This behavior varies in intensity depending on the project. The
better performance on reports close to resolution is due probably one reason: the report’s
status attribute to be classified. The status attributes are very descriptive attributes since its
one-hot encoding representation contains the values “closed” and “resolved”, which means
these reports mostly will have RRT = 0. We say mostly because sometimes a report is re-
opened, which may indicate that the report was wrongly closed. Furthermore, sometimes
the project manager must perform a confirmation step, changing the report status from re-
solved to closed, delaying the final report resolution. Thus, these are two attributes that are
highly correlated with the report resolution, but they depend on each report’s evolutional
context. Once we are dealing with each report independently, the models do not have this
evolutional context, making the final report’s accuracy not perfect. The good accuracy in
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Fig. 6: Accuracy evaluation by report resolution interval

these close-to-the-final states reports is not that interesting in real-world scenarios. On the
other hand, we see that 0.1 progress values present slightly higher values than the posterior
ones (except 1.0 values, explained earlier). We propose to build models that predict the RRT
at any moment of the report life cycle. However, if we can provide reasonable estimations
at the initial or a set of initial reports states (for instance, up to n initial states), the further
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estimations for future reports states becomes unnecessary since the following estimations
could be calculated based on the initial one.

We cannot say that all initial state reports are present at the 0.1 progress group because
it depends on each bug report’s number of states. For instance, a report with five states
may have its initial state in the 0.2 progress group. However, this tendency raises another
question: how good are the models to predict the initial report state? This is an interesting
subject to evaluate because of two reasons: the RRT value of an initial state is the real
report RRT (see Definition 1), once the posterior states RRT are based on the initial one;
and if one can predict with a good rate the initial reports, we can use this estimation, and the
estimations of the posterior states become unnecessary. To answer this question, we perform
another analysis and verify the accuracy for each model/project in the first five states reports.
Table 10 shows the model’s performance classifying all reports (same as the selected models
at Table 9) and classifying the first up to fifth report states. The states values are cumulative,
so ’state one’ results represent the evaluation only of the initial report state, ‘up to 2’ results
for the initial and the second report state, ‘up to 3’, the initial, second, and third state, and
so on so forth.

The values in Table 10 show that the models present higher f-measure and recall values
predicting the initials reports than when predicting all reports. We see a decrease in the
accuracy values and precision in some projects, but, again, due to data imbalance, we prefer
to look at the f-measure. Those are promising results. We have a set of models using simple
attributes to predict RRT of initial states with an f-measure around 0.63 up to 0.87. The only
exception is the project Lucene, which does not provide a significant improvement in the first
three states. In this scenario, we do not have problems with the report’s evolution (i.e., fields
changes and addition) and a set of attributes easy to compute. It is also essential to notice
that our approach presents better results when estimating the fixing resolution time using the
initial states when compared with the best results presented in the baseline approach (EXP2
and EXP3, Table 8). These results also create room for a few insights that we will raise in
the Discussion section. Nevertheless, for now, we can answer our third research question
RQ3: To what extent is there a moment in the bug report life cycle where a resolution
estimation is more precise? Answer: with our set of experiments and data attributes, we
verify a pattern where the most promising way to predict the selected projects bug reports
bug-fixing time is at their initial states, with better results than when we try to predict all
states. The Fig. 6 shows the models’ accuracy in a few RRT intervals. For the majority of
the projects, the worst results occur in reports with RRT between 0 and 5 days, with higher
values in the others intervals. The only exceptions are the projects ‘Lucene’ and ‘Hadoop
Core’: both start with accuracy values around 0.6 at first internal, with some variations until
they reach the same 0.6 value at the last interval. The ‘Lucene’ presents a more smother
variation, with ‘Hadoop Core’ being more erratic as the interval values increase.

The results raise another question: why the performance drops in intermediate states?
To explore this question, we need to set up some premises. The best models are the ones
that classify bug reports that will be fixed in less - class 0 - or more - class 1 - than five days
(Table 9). Notice that all posterior states of an initial class 0 report will always be class 0 —
if its initial state is class 0, all its posterior states will also be class 0, as their RRT always
decreases with each update, so they will never have RRT greater than five days. On the other
hand, some initial reports of class 1 may have some of its posterior states as class 0. In fact,
they have at least one state class 0 (the final state that always has RRT equal zero), and may
have others as class 1, the others states besides the initial, that are a result of updates that
occur prior five days of the report resolution date.
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Table 10: Model results classifying initial states reports

Project Up to state ACC F1 Precision Recall

Flink 1 0.5941 0.7126 0.5857 0.9099
2 0.5961 0.7062 0.5873 0.8861
3 0.5722 0.6975 0.5564 0.9345
4 0.5645 0.6834 0.5572 0.8839
5 0.5807 0.7017 0.5707 0.9108

All States 0.5737 0.5800 0.5026 0.6863

Hadoop Core 1 0.5499 0.6815 0.5441 0.9158
2 0.5594 0.6880 0.5552 0.9096
3 0.5951 0.7244 0.5979 0.9222
4 0.5868 0.7115 0.5856 0.9113
5 0.5304 0.6575 0.5220 0.8929

All States 0.6054 0.5756 0.5691 0.5828

Hadoop HDFS 1 0.5640 0.6798 0.5531 0.8864
2 0.5667 0.6882 0.5561 0.9088
3 0.5655 0.6797 0.5610 0.8682
4 0.5586 0.6856 0.5529 0.9069
5 0.5767 0.6890 0.5723 0.8733

All States 0.5725 0.5945 0.5134 0.7161

Lucene 1 0.5323 0.4469 0.3474 0.6291
2 0.5124 0.4540 0.3428 0.6782
3 0.5555 0.4430 0.3765 0.5420
4 0.5821 0.4740 0.4085 0.5706
5 0.4946 0.4955 0.3698 0.7534

All States 0.6114 0.4720 0.3921 0.5956

Hadoop Mapreduce 1 0.6166 0.7479 0.6176 0.9487
2 0.5689 0.7087 0.5622 0.9584
3 0.6023 0.7417 0.6003 0.9704
4 0.6269 0.7632 0.6294 0.9693
5 0.6057 0.7450 0.6008 0.9805

All States 0.5569 0.6255 0.5295 0.8259

Spark 1 0.5199 0.6339 0.4757 0.9500
2 0.5141 0.6307 0.4775 0.9302
3 0.5164 0.6356 0.4849 0.9222
4 0.5072 0.6327 0.4719 0.9596
5 0.4922 0.6229 0.4623 0.9547

All States 0.5776 0.6284 0.4897 0.8784

Hadoop Yarn 1 0.6009 0.7159 0.6349 0.8206
2 0.6873 0.7782 0.6729 0.9227
3 0.6677 0.7577 0.6548 0.8990
4 0.6673 0.7592 0.6555 0.9021
5 0.6262 0.7261 0.6218 0.8723

All States 0.5861 0.5832 0.5456 0.6321

Zookeeper 1 0.7479 0.8545 0.7488 0.9951
2 0.7338 0.8442 0.7342 0.9933
3 0.7048 0.8251 0.7049 0.9952
4 0.7853 0.8780 0.7834 0.9989
5 0.7010 0.8220 0.7024 0.9914

All States 0.6589 0.7764 0.6626 0.9404

Kafka 1 0.5904 0.7028 0.5588 0.9471
2 0.6195 0.6274 0.6524 0.6046
3 0.6544 0.7101 0.6491 0.7846
4 0.6371 0.7227 0.6325 0.8431
5 0.6380 0.7330 0.6101 0.9181

All States 0.6337 0.6738 0.6052 0.7756

Solr 1 0.5907 0.6931 0.5771 0.8700
2 0.5795 0.6628 0.5702 0.7954
3 0.5891 0.6982 0.5704 0.9003
4 0.6010 0.7071 0.5914 0.8815
5 0.5916 0.6719 0.5783 0.8078

All States 0.6000 0.6092 0.5718 0.6530
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The first thing to notice is the precision suffers less with the addition of all states: the
models perform very similarly considering all or only the initial states, to identify class
0 reports (sometimes the use of all states performs very similar or even better to identify
correctly class 0 reports - Hadoop Core, Lucene, Spark, Solr, also in Table 10). Independent
of looking only at initial states or all states, the models tend to classify class 0 reports as
class 1 (Fig. 6 shows how bad the results are for report states with RRT smaller than five
days, considerably worse than reports with reports RRT greater than 5). The hypothesis is
that there is a similarity between different states of a same report, that when a class 0 initial
report is classified as 1, its posteriors states (all of them are class 0) are very similar and
are kept classified as 1, something like an error propagation from the initial report to the
posterior ones. This is the ////////second first problem with the approach.

We did a performance analysis on the class 0 reports predictions to check the hypothesis
around ///the/////////second //////////problem this first limitation. Given all initial class 0 reports were misclas-
sified by the model as class 1, we calculate the percentage of the cases where all their poste-
rior states also were misclassified as class 1. The results by project are: Zookeeper (78.2%),
Flink (52.1%), Spark (49.7%), Kafka (35.0%), Hadoop MapReduce (33.7%), Hadoop HDFS
(28.2%), Solr (26.5%), Lucene (13.5%), Hadoop Yarn (12.3%), Hadoop Core (5%). While
the percentages vary for each project, it is important to notice that these are very extreme
cases: all intermediate states are also misclassified. In another analysis, we calculate the per-
centage of these cases where at least half of the intermediate states are also misclassified,
when the initial one was also wrongly classified as 1: Zookeeper (87.8%), Spark (81.3%),
Flink (67.6%), Hadoop MapReduce (66.1%), Solr (57.4%), Hadoop HDFS (57%), Kafka
(53.8%), Hadoop Yarn (40.3%), Lucene (33.5%), and Hadoop Core (32.2%). The presented
results show that this is the case in at least one-third of reports of all projects. It is impor-
tant to notice that the number of intermediate states is greater than the numbers of initial
and final states reports (each report only has one initial and one final, but several intermedi-
ate). These numbers provide evidence that different states may not be so different from each
other, and when one is misclassified, this error is propagated for the other similar states. ////The
////first///////////problem////////seems///to////////result //////from//////how////the//////////models ////are//////////////////misclassifying ///////////////intermediate///////states
//////class //1 ///as//////class//0//////////reports. ///So////for////////future////////works,////we///////have //to////////attack////the////////source////of ////this///////////problem,
//as////we///////were ////not//////able //to//////////provide//a/////////similar /////////analysis////as ////we ////did///in//////////problem//////two.

On the other hand, the models are very good at identifying the initial class 1 states re-
ports (see the recall in Table 10, for most projects with values above 0.8 and 0.9). However,
the metric values drop when we use all states, indicating that the models can identify the ini-
tial class 1 reports but not the intermediate class 1 reports. This is the /////first second limitation
//////////problem with our approach, that comes from how the models are misclassifying intermedi-
ate states class 1 as class 0 reports. We evaluate how the number of report states impacts the
model’s performance on the class 1 reports. The argument here is that reports with several
states may be more challenging to model, as their different states may be very similar (simi-
lar to the first limitation in class 0 reports). Also, the simple fact that they have a significant
state number may provide more changes and give them an outlier behavior not present in
reports with a smaller number of states. We perform an analysis where we calculate the met-
rics values in a particular way to identify the impact of the number of states. First, we group
all states of the same report and then calculate the metrics at a report level. For example,
given a report with ten states and the model classify 8 of them correctly, the accuracy is 0.8.
We calculate all reports’ metrics with this strategy and present the average in Table 11. With
this performance at a report level, we split the reports’ predictions into two groups: reports
with higher and smaller numbers of states. The threshold is the project’s median number
of states. We also calculated the Spearman correlation coefficient between the accuracy of
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these groups and their number of states. Table 11 shows the accuracy (ACC), f1-score (F1),
and precision (PRC) results, along with the correlation coefficient (in the last three columns)
between the number of states and the metrics.

Table 11: Results comparison between groups of reports with more and fewer states.

Project More States Fewer States Correlation with
Number of States

ACC F1 PRC ACC F1 PRC ACC F1 PRC

Flink 0.63 0.65 0.71 0.68 0.68 0.70 -0.1 -0.06 0.02
Hadoop Core 0.61 0.60 0.83 0.69 0.68 0.84 -0.18 -0.16 -0.07

Hadoop HDFS 0.64 0.68 0.73 0.69 0.71 0.72 -0.09 -0.06 0.04
Lucene 0.60 0.54 0.66 0.61 0.49 0.56 -0.01 0.11 0.12

Hadoop Mapreduce 0.66 0.68 0.73 0.69 0.71 0.72 -0.09 -0.06 0.04
Spark 0.77 0.80 0.80 0.82 0.83 0.84 -0.17 -0.14 -0.17

Hadoop Yarn 0.74 0.72 0.78 0.69 0.67 0.67 0.2 0.2 0.24
Zookeeper 0.74 0.81 0.75 0.72 0.77 0.69 0.00 0.04 0.07

Kafka 0.68 0.70 0.74 0.70 0.67 0.69 -0.04 0.04 0.01
Solr 0.65 0.66 0.79 0.71 0.68 0.75 -0.11 -0.00 -0.05

The results show a higher accuracy when classifying reports with a small number of
states and a slight negative correlation between accuracy and the number of states of a re-
port in 8 of 10 projects. However, the difference between the groups is not so evident and
significant in the f-measure and precision results. While both analyses are not conclusive
about the reason for the performance drop in intermediate states, both indicate that the ex-
cessive number of states could be an interesting exploration to mitigate the limitations of
our proposed approach.

4 Discussion

The main question we want to explore with our results is the impact of bug report fields
changes and updates on reliably building bug fixing estimation models. We introduce the
idea of bug report evolution and changes as bug report states. First, we verify how often the
bug reports fields are updated and partially replicate a previous approach (Zhang et al., 2013)
to check how it performs with the bug reports evolution and serve as a comparative baseline
to our approach. We verify that the bug reports fields updates impact the models reliability
in different levels, in all projects. In our approach, we considered every state as a unique and
independent report to train the models. After selecting the most promising machine learning
models, we can verify their performance based on how close the best-classified reports are
from their creation or resolution date. Our results present evidence that the reports’ updates
have an impact on the model’s performance. This is important because we verify that a few
studies do not take the reports changes into account when building machine learning models
for this problem (more in the Related Work and Comparison sections).

We first train the models and found the best configuration for our data. The Gaussian
processes and logistic regression perform better in four projects data each, while the neural
network, in two projects. The binary classification with a threshold of five days presents the
best results. All the best models use some data balance strategy (over-sampling or under-
sampling), except in project Zookeeper. After selecting the most promising results, we can
discuss the impact of reports’ evolution. To the best of our knowledge, this is the first work
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concerning report time-fixing estimation to compare these ways of grouping the reports.
Also, we were not able to find other approaches using Gaussian processes for this problem.
When we look at the results, it is noticeable that the best results are not ideal for a real-world
application scenario due to their low metrics values (f-measure and precision around 0.5 ∼
0.7), even though these are approximated values to the ones presented in the literature.

The best results for all the projects are the binary classifications with the five-day thresh-
old, using data balance strategies. This is a good indicator because if we think about the
software development process in terms of sprints, it usually takes small chunks of time, like
one or two weeks. In these scenarios, we can see the models being used to estimate sets of
bugs that will probably be fixed within a sprint. We see that the neural networks, generally,
perform worst than the other two machine learning algorithms. Neural networks have a high
dependency on hyper-parameters Zhang et al. (2017, 2019), and we do not perform an ex-
tensive hyper-parameters search, mostly because of the dataset sizes. This research looks at
the consistency between the models rather than the best models’ higher values. If all models
perform similarly in terms of metrics, we can argue that we reach the dataset and attributes
limit. Once we better understand the reports’ evolution impact on the models, we want to
train models with a hyper-parameters optimization. Through the results, we conclude that
the chosen attributes may not be good enough to provide reasonable estimations.

For future work, we intend to use more attributes that carry some evolutional content
of previous reports (e.g, previous values of selected fields) and some attributes with more
insightful meaning of the textual fields. Techniques that benefit from the data’s evolutional
nature (e.g Markov chains and Long short-term memory neural nets) could also be interest-
ing approaches to explore.

After selecting the best models, we can explore the impact of the reports’ changes on the
models’ performance. The results indicate that the best results are acquired when classifying
the initial states reports compared to intermediate states reports. Up to five reports updates,
we have higher F1, and recall in nine of the ten projects compared to classifying all reports’
states. This seems counter-intuitive because it is reasonable to believe that any field updates
in the report should provide more information to the models. Further research is needed to
establish the reason for this behavior, but we have a few hypotheses to explore. The first one
is regarding the independent way we consider every report’s state. The performance drop
can indicate that a past evolutional context is necessary, at least using our chosen attributes.
The attributes as they are in any report states seem to be not enough to provide consistent
estimations. The second one is related to the reports’ idle time between updates. All selected
projects are open-source software and the bug fixing process and reports could be different
when compared to commercial software. In a previous dataset analysis, we verify that the
time between updates can surpass days or months in some reports. This may also occur due
to low priorities reports, but we intend to verify if this is the case in the future. Once again,
without an evolutional context, this could negatively impact the models’ predictions. Once
the initial reports have little to none evolutional context, this could also explain why their
predictions perform better. The results also open the possibility to train models only with the
initial set of reports once they perform better and make more sense in the bug-time-fixing
process.

To conclude the reflections regarding the results, we revisit the/////////////hypothesis analyses pre-
sented at the end of the Results section on why the performance drop in intermediate reports.
Given the best results being at the initial states, the idea that posterior reports have a smaller
RRT and inferior performance may indicate that they are not too much different from their
previous states. We consider every update (or a set of updates in a small window of time)
as a unique state, and each one of these updates impacts equality in the bug RRT decreases.



28 Renan G. Vieira et al.

However, some updates may have a more (or even a real) impact on the RRT decrease com-
pared to others. For instance, a new comment probably does not have the same impact as
an attachment in the bug RRT estimator. The idea is to characterize an ‘impactful update’
that changes the original RRT estimation, defining when new updates bring new and rel-
evant information to the bug report. This could reduce the number of states, focusing on
those different from each other, improving the quality of the data, hence the results. It is
also essential to notice that the analyses on the performance drop in intermediate states are
performed in models trained with all states. We believe that a proper conclusion about the
number of states’ effects on the models’ performance would only be achieved with a new
round of training removing unnecessary states. However, removing some states without a
proper characterization of what is useful or not in the modeling process would not provide
sound conclusions. Therefore, we indent to characterize these types of updates and states in
future works properly, as it seems a natural unfolding from the findings of this manuscript.

In this paper, we look at the bug-fixing time as the information to be estimated and how
the bug report evolution impacts reliable estimators. However, notice that this question can
be applied in others bug report features to be estimated: priority, assignee, duplicated bugs
and bug localization, all of those explored using bug reports in previous works (Lazar et al.,
2014; Ebrahimi et al., 2019; Guo et al., 2011; Shokripour et al., 2015; Tian et al., 2015).
It would be essential in future works to explore how these bug reports updates impact the
other features estimators, once in this research, we gathered evidence that it has a significant
impact in bug-fixing time.

5 Threats to Validity

In this section, we list some threats to the validity of our research method. We organize
threats into four groups: conclusion validity, internal validity, construct validity, and external
validity, as suggested by the work of Wohlin et al. (2012).

A threat to conclusion validity would be a few decisions regarding the adopted method-
ology. When we train the models, we lose evolutional information and relation between the
report’s states, with each state being considered an independent report. However, this ap-
proach allows inferring the bug fixing time of any report without any previous information
about its past field values. This approach is straightforward to implement and less resource-
demanding. Nonetheless, we know that this level of independence between reports’ states
may not represent a real-world scenario, leading us to inferior results. However, we choose
this approach to see its viability due to its simplicity. As we discuss, we verify that the re-
ports’ evolution does impact the model’s performance metrics. For future work, we intend to
use more attributes that carry information about previous states or even use models dealing
with temporal changes over states.

A threat to internal validity is that the original data acquisition and the script to create
the temporal dataset are susceptible to bugs. However, we take special care to use visual
tools to visualize the results and minimize bugs chances in the datasets’ creation and mining
scripts. Another threat is the reports years’ range, where a few reports dated from 2009. We
cannot measure the cultural bug fixing tasks difference over the years. In other words, we
do not know if an older bug report can represent or is similar to the most recent ones. If the
process changed or improved over time, fixing a bug with similar reports in different years
can be discrepant.

As a threat to construct validity, we consider the best models as those with higher f-
measure values due to data imbalance. However, depending on the context or project, it may
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be interesting that some class error does not have the same impact as the other one. For
instance, let us consider the binary classification with a five-day threshold (class zero for
less and class one for more than five days to fix). A misclassified class zero report may not
necessarily mean that one could not fix the bug in less than five days. Maybe there were too
many bug reports or less available programmers in the specific week to fix the bug. The bug
could be a simple, low priority bug, competing for resources with other more urgent and
complex bugs, leading to its fix delay. Once again, the bug report evolution context can play
an essential role in the error analysis and it seems as a promising avenue for future work.

The original dataset comprises projects from nine categories for external validity, and all
projects are open source. The selected projects cover three categories: ‘big-data’, ‘database’
and ‘web-framework’. Thus, we cannot generalize the results for commercial software and
software from others categories.

6 Related Works and Comparison

In this section, we discuss the related works and compare a few of them to our approach. It
is hard for us to compare with other researchers’ approaches due to the unique way we deal
with the reports states. A few works discuss the reports changes, but not in the same way we
propose here, and all of them use different sets of models, reports’ attributes, and different
datasets. Nonetheless, we look at all the most relevant papers with the same objective that we
find in literature and propose a discussion regarding the points we believe are comparable.
We look primarily at three points on each related work: the model’s f-measure since it is a
metric that appears in most papers; the moment in the reports’ states in their life cycle that
the models and predictions are made; the set of attributes used to build the models and how
complicated/hard are to acquire them.

The most similar to our work is probably the paper of Habayeb et al. (2018). The work
uses a dataset composed of Firefox bug reports from 2006 to 2014. The authors model the
problem as a binary classification problem: a long time (slow) report to fix, or a short time
(fast) report to fix. They highlight the fact that their work is one of the first that deals with
this question, taking into account the temporal sequence and changes of the bug reports.
They compare their proposal with a KNN model (Zhang et al., 2013), test several variations
of the HMM, different train/test set sizes, and HMM temporal sequences length variations.
As observation set, they use information about the reporting, assignment, comments, prior-
ity, among others. The models are evaluated by precision, recall, f-measure and accuracy
metrics and present better results in comparison to previous proposals. The authors have a
similar argument related to the importance of the report’s temporal changes. They perform
several experiments regarding the report life cycle moments to predict the fixing time, using
a Firefox dataset. The most similar experiment to our approach is when they try to classify
the initial reports with the first week’s updates. The models present an average f-measure
of 0,6710, a smaller but comparable value than the best results present in Table 10. Their
proposal considers the evolutionary aspect of reports and uses easy to compute attributes (a
set of possible report fields and state changes, not their values). However, we question the
threshold value used in their approach. The authors use the bug report’s median bug-fixing
time by year as the threshold to set it as slow or fast. Even if it is a common strategy in other
papers (Hooimeijer and Weimer, 2007; Kim and Whitehead, 2006), we question how this
separation could be viable for significant median values. For instance, for the years 2007,
2008, and 2009, the Firefox dataset’s median value is 194, 230, and 203, respectively. In
a context to plan and estimate software releases, smaller fixed threshold values (i.e., 5, 10,



30 Renan G. Vieira et al.

15 days) are more appropriate. Another case is that the year median bug-fixing time is a
posteriori information, is only knowable after the year’s end. How to build models to predict
bug reports opened in the current year, for instance? What threshold to use in these cases?
We argue that using a smaller predetermined threshold value is more suitable because of the
points mentioned above.

Thung (2016) propose an automatic prediction method of bug fixing effort. In that pa-
per, however, the effort is code churn size, the number of lines of code that is either added,
deleted, or modified to fix the bug. The author uses 1,029 bug reports from Hadoop-common
and strut2 projects to evaluate his approach. The authors model the problem as a classifica-
tion task, labeling bug fixing efforts into “high” and “low” categories. The 40 lines code
churn size is the threshold used to define in which category a bug is. The features used to
train the a Support Vector Machine model are the textual content that appears in the sum-
mary and description fields of bug reports. The work compares the approach to the baseline
model that classifies every bug as a low effort bug (i.e., the majority label) and present pos-
itive results. The research presents a 0.612 AUC using both datasets to train the model, but
it uses the last and closed report states information.

Assar et al. (2016) use clustering techniques to group bug reports through the descrip-
tion field. The paper works as a conceptual replication of the work by Raja (2013) and an
evaluation of the proposed method prediction accuracy. Along with the work by Weiss et al.
(2007), this is one of the few papers that relies exclusively on the textual fields to come up
with a prediction model. Given a new report, they predict its Defect Resolution Time (DRT)
as the mean DRT of the most similar report cluster. The textual values extracted from the
description are from the closed/resolved reports. It is impossible to say how different the
report’s initial descriptions are from the final because we do not have access to the datasets’
historical data. As presented in Vieira et al. (2019), we could use an estimation that updates
in the description field occur 18.16% of the mined Jira bug reports. The work concludes that
the approach is not suitable for practical use due to poor results. In summary, the authors
show that a straightforward clustering approach based on term-frequency in bug reports de-
scriptions is not able to predict defect resolution time with reliable accuracy. This example
serves as another case where these report’s fields updates are not taken into account.

Al-Zubaidi et al. (2017) propose a multi-objective search-based approach to estimate
issue resolution time. The search is oriented by two contrasting objectives: maximizing the
model accuracy and minimizing the model complexity. In this case, their approach works
for any issue, not only for bugs. A genetic programming approach is followed to search for a
better symbolic regression model. They compare their best model with Case-based Reason-
ing (Weiss et al., 2007), Random Forest, and Linear Regression. Their model the problem
as a regression one and show better results than random guessing, mean and median esti-
mation, and case-based reasoning. Their approach also outperforms other machine learning
methods, like linear regression and random forest. They use a small set of report fields (type
- bug, task, improvement -, priority, reporter’s reputation, title and description text, and their
readability through the Gunning fog readability metric). They argue that the selected ones
are likely to exist from the report creation, as the reporter, issue type, and the number of
words in description and title. This shows the same concern we have about the difference
between fields at the initial and final report states. They use datasets of five JIRA projects
(8.260 issues): Hadoop Common, HDFS, Yarn and Mapreduce, and MESOS. We cannot
compare results with this approach since it has a broader scope (all issues, not only bugs)
and different metrics, since we propose classification models and their regression models.
However, the model’s MAE (Mean absolute error) high values (from 17.8 up to 33.35) may
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indicate that the approach is not reliable for practical purposes, even though their approach
outperforms naive baselines and state-of-the-art techniques.

Hamill and Goseva-Popstojanova (2017) investigate two points regarding the bug fix
task: 1) an analysis on the effort needed to fix software faults and the factors that affect it;
and 2) an analysis on the prediction of the level of fix implementation effort based on the
information provided in the software change requests. The paper text uses the term “fault”,
but from the context we can say that it is equivalent to bugs. The paper considers 1,200
failures/bugs extracted from the change tracking system of a large NASA mission. They are
used to train three classification models to estimate the effort level of the fix implementation:
Naive Bayes (NB), Decision Tree, and PART, a rule induction method based on partial
decision trees. They use the ZeroR learner, a classifier that always predicts the majority
class for any given sample. They evaluate the models with accuracy and show that their
models did significantly better than the baseline.

Zhang et al. (2013) propose a Markov-based (Discrete Time Markov Chain model)
method to predict the number of bugs that will be fixed in the future and other methods
to different estimations. The dataset used is composed of three CA Technologies projects, a
commercial corporation. The features used by the model are submitter, owner, severity, pri-
ority, ESC (if the bug is reported by end-users or by the QA team), category, and summary.
The paper outlines highlights of the three proposed models. The first, a Markov model-based
that shows a 3.72% MRE when predicting the number of fixed bugs in the future. The second
one, a Monte Carlo method for predicting the total time to fix a given number of bugs with
a 6.45% MRE; and a k-NN-based method to classify a particular bug as a slow or quick fix
with an average weighted F-measure 72.45%. This work is replicated with an open-source
software project, namely Firefox, by the authors Akbarinasaji et al. in their work Akbari-
nasaji et al. (2018). The paper describes the same methodology, models, and methods of the
original work. The proposed Firefox Markov based model to predict the number of fixed
bugs in three consecutive months obtain a 1.70% MRE; The Monte Carlo simulation, to
predict the fixing time for a given number of bugs achieve a 0.2% MRE; and the kNN-base
model classifies the time for fixing bugs into slow and quick with a 62.69% f-measure.

Bhattacharya and Neamtiu (2011) investigate the correlation between various dependent
variables (namely, number of developers, severity, attachments, and dependencies) and the
bug-fix time. They define the developer’s reputation and verify its correlation with the bug-
fix time as well. The work’s conclusion, acquired after a univariate regression test, indicates
that the bug mentioned above reports do not exhibit a high correlation with bug-fix time.
They suspect that successful predictions made in prior works can be justified by the prob-
lem known as “optimistic bias” in machine learning. The authors suggest that to avoid an
optimistic bias problem in future works, researchers should train models with larger datasets
and choose multiple applications to verify the model generalization power.

A few papers discuss the temporal and evolutive report changes but never as the main
study su//object. The papers that use the summary and description fields, for instance, do not
take into account possible changes that these fields might have. Even the state or the ex-
act moment when the report and its features are collected generally is not evident during
the dataset description. In the present work, we highlight our concern with this inherent
characteristic of the bug reports life cycle, along with our paper’s two significant novelty
contributions compared with those presented in this section. The first one is the results re-
garding how the different states reports —- initial and final states, explored in EXP1, EXP2,
EXP3, and RQ1 — impact the models’ estimation reliability. To the best of our knowledge,
this is the first paper to address this question explicitly. Our work also shows that training
the models with unappropriated states (i.e., last state reports) can provide optimistic results



32 Renan G. Vieira et al.

when it is usually necessary to estimate bug-fixing time (i.e., initial state reports). The sec-
ond one is the evaluation of a new approach to incorporate the reports updates dynamic into
traditional machine learning methods. Although our work is not the first paper to provide
this kind of insight — Habayeb et al. (2018) proposal estimates the RRT in different states
as well, and Al-Zubaidi et al. (2017) shows some concern about the fields changes during
feature selection —, our proposal relies upon a new idea of different reports states as snap-
shots to train the models. This allowed us to provide a more detailed analysis of how they
perform in distinct moments of a report life cycle.

Another noticeable thing is the relatively small variation in machine learning methods
on the majority of the papers, being most of them more traditional ones such as SVM,
Random Forest, KNN, Logistic Regression, and Decision Tree. //////Most////////works//////////evaluate//////only
/a///////small//////////number///of/////////models. In our case, we aim to diversify our experiments with different
types ////////variety of models. For instance, we include /////deep//////////learningneural networks models and
Gaussian processes in our evaluations, choices that are rarely (if ever) seen in this kind of
problem, maybe due to the usually small-sized datasets.

7 Conclusion

This paper investigates how the bug reports field updates impact the bug-fix time predic-
tion using machine learning models. We use ten open-source projects from JIRA where
we mine the bug reports data to train the models and draw our conclusions: Hadoop Core,
Hadoop MapReduce, Hadoop HDFS, Hadoop Yarn, Lucene, Kafka, Solr, Zookeeper, Flink,
and Spark. We create a new dataset based on the final reports ’state and their previous fields’
changes and updates. We test several configurations to build different models: three ma-
chine learning algorithms (logistic regression, neural network, and Gaussian process), the
use or not of data balance (use of original data, oversampling or undersampling), and differ-
ent days thresholds to classify the bug reports as 1) more or less than five days to be fixed
(two classes); 2) more or less than ten days to be fixed (two classes); The best f-measure
values (we also present log-loss, accuracy, recall, and precision) are acquired using classifi-
cation models, predicting the bug reports as more or less than five days to be fixed. Neural
networks, linear regression, and Gaussian processes all present moderately similar results.
However, Gaussian Processes outperforms the others in four projects (Hadoop Mapreduce,
Hadoop HDFS, Kafka, and Spark). For four other projects Linear regression presents the
best results (Hadoop Core, Flink, Lucene, and Solr). The neural networks provide the best
results for two projects, Hadoop Yarn and Zookeeper. For all projects, except Zookeeper,
the use a data balance strategy improve the final results in all in selected models: under-
sampling for the Logistic Regression and Gaussian Process, and the oversampling for the
neural network for Hadoop Yarn data.

Our approach uses the bug reports as patterns to train machine learning models, but
with a particularity. The bug reports have changes and updates in their fields, from their
creation moment until their resolution. We consider that for each field addition or update
during its lifetime, we have a new report with more information and a shorter bug-fix time.
This allows us to have more data and verify how the reports’ updates impact the models’
prediction capacity. Our experiments show that field updates have an impact on the models’
performance. We get the best results when predicting the resolution time at the initial report
states (close to data creation), which is suitable for a practical scenario, and at the final report
states. The results vary depending on the project. For the initial report’s best estimations, we
acquire f-measures between 0.63 up to 0.87, depending on the project. Our approach also



The Role of Bug Report Evolution in Reliable Fixing Estimation 33

outperforms the baseline work Zhang et al. (2013) using different sets of attributes and
are also comparable to similar works with different data. All selected attributes are easy to
compute and understand, ideal for a real-world use scenario.

For future works, we want to test more attributes that use information from previous
reports states. Our approach considers each report as an independent pattern. The addition of
more evolutional context in the attributes could improve the results. We only tested a simple
natural language processing technique (BoW) on textual attributes, and more complex ones
might provide better results. ////////Textual////////////attributes ////can/////also////be//a //////////valuable///////////addition,///////using ////////natural
//////////language//////////////processing,///////since ///all////the/////////textual ///////////attributes////we////use/////are //////word////////////counting, ////and/////the //////BoW
////use//////does////not//////////provide///////better/////////results ///////when////////////compared//////with////the//////////features////we///////used. We want to
categorize these corrected reports and create a profile that indicates what makes them easier
to classify. After improving the results, feature importance could be used to define the more
relevant fields in the report that helps to provide consistent RRT estimators. This could lead
us to best practices when creating new bug reports.
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