Code Clone Configuration as a Multi-Objective Search Problem

Denis Sousa
State University of Ceara
Fortaleza, Brazil
denis.sousa@aluno.uece.br

Chaiyong Ragkhitwetsagul
Faculty of Information and Communication Technology,
Mahidol University
Nakhon Pathom, Thailand
chaiyong.rag@mahidol.edu

ABSTRACT

Clone detection is an automated process for finding duplicated code
within a project’s code base or between online sources. Nowadays,
the code cloning community advocates that developers must be
aware of the clones they may have in their code bases. In mod-
ern clone detection, rank-based tools appear as the ones able to
handle the large code corpora that are necessary to identify online
clones. However, such tools are sensitive to their parameters, which
directly affects their clone detection abilities. Moreover, existing pa-
rameter optimization approaches for clone detectors are not meant
for rank-based tools. To overcome this issue and facilitate empirical
studies of code clones, we introduce Multi-objective Code Clone
Configuration, a new approach based on multi-objective optimiza-
tion to search for an optimal set of parameters for a rank-based
clone detection tool. In our empirical evaluation, we ran 3 base-
line search algorithms and NSGA-II to assess their performance
in this new optimization problem. Additionally, we compared the
optimized configurations with the default one. Our results show
that NSGA-II was the algorithm that achieved the best performance,
finding better configurations than those of the baseline algorithms.
Finally, the optimized configurations achieved improvements of
71.08% and 46.29% for our fitness functions.

KEYWORDS

Clone Detection, Search-based Software Engineering, Multi-objective
Optimization

ACM Reference Format:

Denis Sousa, Matheus Paixao, Chaiyong Ragkhitwetsagul, and Italo Uchoa.
2024. Code Clone Configuration as a Multi-Objective Search Problem. In
Proceedings of the 18th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM °24), October 24-25, 2024,
Barcelona, Spain. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3674805.3690757

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).

ESEM °24, October 24-25, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1047-6/24/10

https://doi.org/10.1145/3674805.3690757

Matheus Paixao
State University of Ceara
Fortaleza, Brazil
matheus.paixao@uece.br

Italo Uchoa

State University of Ceara
Fortaleza, Brazil
italo.uchoa@aluno.uece.br

1 INTRODUCTION

It is common for developers to adopt code cloning rather than other
code reuse strategies, to increase productivity during software de-
velopment [19, 35, 37, 38]. By leveraging existing code snippets,
developers insert code clones into their systems, thereby saving
time that would otherwise be spent writing code from scratch. The
benefits and drawbacks of code clones are still debatable in the
software engineering community [8, 16]. Nonetheless, the com-
munity agrees that it is important to be aware of the clones in
one’s software projects to properly manage them (e.g., leaving as-is,
refactoring, tracking, and removing) [19, 35, 37, 38].

In the past, code clones were mainly created by duplicating code
from other parts within the same project or from other projects [19,
35, 37, 38]. Nonetheless, the way developers reuse code evolved
after the rise of the internet. We currently have online code clones,
which are code fragments copied from online platforms (e.g., Stack
Overflow, GitHub, ChatGPT) to software projects and vice-versa [13,
22, 23, 29, 32, 48, 49]. Both types of clones are used for the same
purpose: to obtain new functionality, perform a specific task, or fix
a bug. The main difference between traditional clones and online
clones is that the latter are challenging to locate and rectify due to
the scale of the large code bases on the internet [30, 40].

Developers must exercise caution when reusing of online code.
They can be dangerous to systems, leading to security breaches,
API misuse, license violations, and other issues [2, 30, 53]. The Stack
Overflow platform, one of the main sources of data for code reuse,
allows users to find out-of-date answers accepted by the commu-
nity [51]. Ragkhitwetsagul et al. [33] present a use case where a
Stack Overflow code snippet remained marked as the correct an-
swer for approximately two years despite being poorly optimized.
The same code snippet was later found in 435 Java projects on
GitHub. This highlights the importance of developers being aware
of the implications of copying online code.

Previous studies have demonstrated that the performance of
clone detection tools is heavily influenced by their parameter con-
figurations [20, 31, 34]. Ragkhitwetsagul et al. [31] show that using
the tools’ default configuration may lead to sub-optimal perfor-
mance. Thus, it is crucial for clone researchers and practitioners
who rely on clone detection tools to regularly adjust their tools’
parameter configurations in their empirical studies or usages. Unfor-
tunately, finding an optimal configuration for code clone detectors
is not simple. It depends on the dataset and the goal of finding the

https://doi.org/10.1145/3674805.3690757
https://doi.org/10.1145/3674805.3690757
https://doi.org/10.1145/3674805.3690757

ESEM ’24, October 24-25, 2024, Barcelona, Spain

clones (e.g., finding literal copies, looking for alternative implemen-
tations). Thus, having an automated way to tune the code clone
detector’s configuration can save developers’ and researchers’ time.

Using search algorithms is a means to obtain the optimized con-
figurations for clone detectors. In the work by Wang et al. [44],
the authors demonstrate a single-objective search approach em-
ploying genetic algorithms to discover the best configurations for
six clone detectors [1, 7, 11, 14, 15, 28]. The authors observed that
adjusting configurations can significantly enhance the quality of
detection. Similarly, Ragkhitwetsagul et al. [34] employs the same
single-objective genetic algorithm to optimize the parameters of
four clone detection tools. Nonetheless, the result from the study
shows that the single objective optimization may lead to producing
additional false positives and false negatives. In this context, it is
important to reduce the number of false positives from clone detec-
tors to avoid “static analysis fatigue” [36]. At the same time, if the
optimized configurations only aim to provide high precision, it may
also report only a few clones (i.e., low recall). Thus, it is necessary
to strike a balance between the precision of the clone detector and
the number of clones reported.

In this paper, we propose a multi-objective approach to the prob-
lem of configuring parameters for clone detectors, aiming to balance
the precision and recall of the clone recommendations. The clone
detector selected for this study is Siamese [30], as it is one of the
few tools that is applicable for online code clone scenarios, and
also possesses an extensive set of parameters. The Mean Overall
Precision (MOP) and Mean Reciprocal Rank (MRR) metrics were
adopted as fitness functions for optimization. MOP is a novel met-
ric we created to evaluate precision by considering the ranking
of clones, while MRR is a metric already used for clone detectors
capable of making multiple recommendations [6, 12, 30]. Our study
provides a comparison between baseline algorithms for parameter
optimization and NSGA-II [9].

Our results show that NSGA-II achieves the best results. In ad-
dition, the configurations identified by NSGA-II outperform the
default configuration by 71.08% and 46.29% for MOP and MRR, re-
spectively. We make our replication package publicly available [41].

2 BACKGROUND AND RELATED WORK

Clone detection is the automated process of finding duplicate code
in a given codebase or between two codebases. This practice is
useful in various areas of software development, such as code refac-
toring [5], bug detection [21], code quality [26], and others. It is
difficult for a clone detector to simultaneously achieve high preci-
sion, recall, and scalability when searching for code clones [29-31].
Thus, clone detectors are usually customizable, having multiple
parameters for developers to tweak.

Code-to-code search tools are a type of code clone detection
tool that, given a code query, reports a ranked list of clone candi-
dates [17, 18, 24, 27, 30]. These tools are scalable and can search for
clones in large-scale source code data. These rank-based clone de-
tectors are useful for locating clones or recommending alternative
implementations from online code bases such as Stack Overflow or
GitHub. Code clone search usually returns a large number of results
because of the large-scale search corpus. By having the ranked list
of results, the true clones not only need to be included in the result

Denis Sousa, Matheus Paixao, Chaiyong Ragkhitwetsagul, and Italo Uchoa

but also be closest to the top-ranked result because developers may
be able to only look at the top N results and ignore the rest.

As previously mentioned the work by Wang et al. [44] presents
EvaClone, a framework capable of optimizing configurations of
clone detection tools through a single-objective genetic algorithm.
Ragkhitwetsagul et al. [34] present a replication of this study. How-
ever, in the replication, EvaClone provided undesirable results. A
qualitative analysis showed that the tools optimized with EvaClone
reported many false positives and false negatives.

Previous research efforts in clone parameter optimization are
limited to optimizing agreement between tools. Considering a prop-
erly formatted oracle, such as Bellon et al. [3]’s beanchmark, one
may find good results. However, when applied to a real-world sys-
tem, such an approach yielded poor results for clone quality. Given
the additional challenges of online clones, existing approaches for
optimizing parameters are unfeasible for modern clone detectors.

3 MULTI-OBJECTIVE CODE CLONE
CONFIGURATION

3.1 Fitness Functions

Given a certain code snippet as a query, rank-based clone detection
tools output a list of snippets the tool believes to be clones. The
tool may also choose not to suggest any snippets in case it believes
there are no clones for the query. In this case, the tool’s output
consists of an empty list. By leveraging an oracle of labeled clones,
one can assess the quality of a certain configuration.

Consider Q to be the set of all code snippets (queries) in the oracle.
Each code snippet in the oracle is represented by ¢ € Q. In this
context, O(q) indicates the known clones for query g in the oracle.
Consider S to be a rank-based clone detector. Given a certain query
q submitted to S, S(q) represents the list of snippets suggested by
the tool, where S(q), indicates the code snippet ranked at position
n in the list. The goal of is that for every g € Q, S(q) = O(q). In
this condition, not only all the snippets suggested by the tool were
correct (precision) but also the tool retrieved all clones according
to the oracle (recall). In rank-based clone detection, precision and
recall cannot be computed according to standard metrics [31, 39,
40, 52]. Hence, to compute the precision and recall for rank-based
clone detectors, we used proxy metrics inspired by classic quality
indicators in recommendation systems [25].

To compute the precision of S(q), we leverage Precision@k. Con-
sidering the first k suggestions for a query (k < |S(q)|), this metric
counts the number of correct suggestions until the k;, rank aver-
aged by k, as shown in Equation 1.

Zk . X = 1, lfS(‘I)n € O(Q)
n=1 =0, ifS(q)n ¢ O(q)
k

Since the goal of a clone detector for a certain query is to iden-
tify all existing clones as precisely as possible, the tool’s preci-
sion cannot be assessed by considering only a single value of
k. Instead, given a list of suggestions, it is necessary to evalu-
ate the Precision@k for the entire list. Hence, we introduce the
OverallPrecision (OP) metric, depicted in Equation 2. Given S(q)
for a certain query g, the OP(S(q)) metric sums the Precision@k

Precision@k(S(q)) =

Code Clone Configuration as a Multi-Objective Search Problem

values where 1 < k < |S(q)|, and averages over the number of
suggestions in the list.

IS@! procision@k(S
oP(s(q) = T AR @

The OP(S(q)) metric can be used to assess the overall precision
of a single query. However, the oracle is composed of several queries.
Consider Qs to be the subset of queries for which clone detector S
provided a non-empty list of suggestions so that Qg € Q. To assess
the precision of a clone detector for a certain oracle, we employ the
MeanOverallPrecision (MOP) metric, shown in Equation 3.

2% op(s(q) o
1Osl

Measuring recall in rank-based clone detection is also not straight-
forward. Not only it is necessary to assess to what extent the clones
in the oracle were retrieved but also if the clones were retrieved
within the top ranks in the list. For this, to the best of our knowledge,
one needs to employ the ReciprocalRank (RR) indicator [43].

Consider rank(S(q)) to represent the rank position of the first
correct clone suggested by tool S for query g. RR is computed
according to Equation 4. As one can see, when a correct clone is
suggested in the top ranks of the list, a higher value of RR is awarded.
Differently, if a correct clone only appears at the end of the list, the
metric yields a lower value. The worse value of RR(S(g)) = 0 occurs
on two occasions: i) the tool does not retrieve a single correct clone
from the oracle; and ii) the tool does not suggest any clones.

MOP(Q) =

RR(q) = if [S(g)l > 0

1
rank(S(q))’ (4)
RR(q) =0, if[S(q)| =0

The RR metric can be used to assess the recommendation quality
for a single query. To measure the recommendation quality for an
entire oracle (Q), we employ the MeanReciprocalRank (MRR) metric,
as depicted in Equation 5.

42 RR(q)
[

3.2 Example of Fitness Computation

MRR(Q) = ®)

To demonstrate how the MOP and MRR metrics are computed, we
will use two real examples from our oracle (see Section 4.2). Query
q1 is a code snippet for a hashCode() method implementation
found in a StackOverflow post. The oracle indicates two snippets,
s1 and s, as clones of g1, both found in NetBeans source code. Query
q2 is the method getNoFocusBorder () included in a StackOverflow
post, for which our oracle indicates three existing clones in the
source code of JHotDraw and NetBeans. The links and references
for the clone pairs discussed in this section are available in our
replication package [41]. Let’s assume that, for g1, we have the
known clones in the oracle O(q1) = {s1,s2} and the suggestions
made by a certain clone detector S(q1) = {s1, s2}. For g2, we have
O(qz2) = {s3, 54,55} and S(qz) = {s1, 55, s3}.

To compute MOP(Q), one needs to first compute the values of
OP(q1) and OP(q3). For g1, the clone detector suggested two clones

ESEM ’24, October 24-25, 2024, Barcelona, Spain

(IS(q1)| = 2). Hence, we need to compute the Precision@k for k = 1
and k = 2. For k = 1, we only look at the first suggestion made by
the clone detector, which is a true clone. Thus, Precisions@1(q1) =
% = 1. For k = 2, we look at the first and second suggestions, which
are both true clones. Thus, Precisions@2(q1) = 1—J2'1 = 1. As aresult,
OP(q) =4 =1

For g2, we compute Precision@k for k = {1,2,3}. In this case,
Precision@1(q2) = (—1) = 0 because s; is not a true clone. Next,
Precision@2(q2) = O—JZ'I = 0.5 and Precision@3(q2) = % = 0.66.

Hence, OP(qz) = %+0-58066 — 38 Finally, MOP(Q) = Z(0)20P(a:) _
14038 — 0.69.

To compute MRR(Q), we need to compute the ReciprocalRank
indicator for g; and gy. Regarding RR(q1), we identify the rank of
the first true clone suggested in S(q1). The first suggested true clone
is s at rank 1st. Hence, RR(q1) = % = 1. In the case of S(g2), the
first suggested true clone is s5 at rank 2nd. Thus, RR(q2) = % =0.5.

As aresult, MRR(Q) = w = 1205 _ ¢ 75,

5= =

3.3 The MC3 Problem Formulation

Given a rank-based clone detector, the Multi-objective Code Clone
Configuration (MC3) problem consists of searching for a param-
eter configuration that maximizes the MeanOverallPrecision and
MeanReciprocalRank metrics, as defined in Section 3.1. Consider xg
the parameters that configure a clone detector S to be subjected to
an oracle of queries Q. The MC3 problem is defined in Equation 6.

O3 {max fi(s) = MOP(Q) ©

max f,(xXs) = MRR(Q)

4 EMPIRICAL METHODOLOGY

In this paper, we set out to answer the following research questions.
The rest of this section depicts our methodology including the clone
detector, the oracle, and the search algorithms.

e RQ1: What is the performance of search algorithms in the
Multi-objective Code Clone Configuration problem?

e RQ2: How do the optimized configurations compare to the
default configuration?

4.1 Siamese

Siamese is a scalable rank-based code clone search tool that employs
multiple techniques to improve the accuracy and scalability of its
clone detection [30]. It relies on multiple code representation, query
reduction (QR), and a customized ranking function. Siamese works
in two phases: indexing and retrieval.

In the indexing phase, the corpus of source code that will be
searched for clones is input into Siamese. Siamese works with four
different code representations: ro—original source code text, r{—n-
grams of code token with no renaming, rp—n-grams of code token
with the identifier, literal and type-token renaming, and r3—n-grams
of code token with all tokens renamed.

In the retrieval phase, a code snippet serves as a query to search
for clones. The query is processed similarly to the indexing phase.
After getting the query’s four code representations, Siamese per-
forms query reduction by removing irrelevant search tokens and

ESEM ’24, October 24-25, 2024, Barcelona, Spain

Table 1: Siamese parameters used in this study.

Parameter Values

{4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16,

n-gram size (nGS) 17, 18, 19, 20, 21, 22, 23, 24}

QR threshold (qOr, qT1, qT2, qT3)
boosting (bOr, bT1, bT2, bT3)

{2,4,6,8,10, 12, 14, 16, 18, 20}

£1,1,2,4,6,8, 10, 12, 14, 16, 18, 20}

minCloneSize (mCS) {6,7,8,9,10, 11, 12, 13, 14, 15, 16}

{{10%,20%,30%,40%}, {20%,30%,40%,50%},
{30%,40%,50%,60%}, {40%,50%,60%,70%},
{50%,60%,70%,80%}, {60%,70%,80%,90%},
{10%,30%,40%,50%}, {20%,40%,60%,70%},
{30%,60%,80%,90%}}

simThreshold (sTh)

n-grams. The gr threshold is used as a cut-off threshold for mak-
ing such removal. The four representations after query reduction
are used to retrieve similar code snippets. Finally, the similarity
threshold is used to filter out the clones with lower similarity than
the threshold. If there are no clones above the similarity threshold,
Siamese does not make any recommendation.

Table 1 depicts Siamese’s parameters used in our empirical study.
Both the gr threshold and the boosting parameters are composed
of four individual parameters, one for each code representation.
Even though they are treated as separate parameters in the opti-
mization process, these parameters have the same overall purpose
and can assume the same values. We selected the same parameters
used in Siamese’s original publication [30] and also expanded by
considering additional values for each parameter.

4.2 Clone Oracle

The oracle employed in our study is a manually annotated set of
real-world online clone pairs between StackOverflow (SO) posts
and open-source software projects written in Java [32]. The code
snippets from SO come from accepted answers to Java-related ques-
tions. The Java open-source projects come from the Qualitas bench-
mark [42]. For each SO code snippet, the oracle indicates one or
more snippets in the Qualitas’ projects that have been validated as
real clones. For each clone pair, the oracle indicates the start and
end lines for both the SO post and the Qualitas code file.

In the original manual annotation [32], the clone pairs were
categorized into different groups. For this study, we excluded the
trivial clone pairs categorized in the BP (boiler-plate or IDE auto-
generated), IN (inheritance/interface implementation) and NC (not
clones) groups. For more details regarding the manual annotation
and categories, we refer to the original publication [32]. This re-
sulted in a total of 553 clone pairs between SO and Qualitas’ projects,
associating with 323 unique SO snippets.

To evaluate Siamese using the oracle, we had to download and
preprocess the SO code snippets and the Qualitas projects listed
in the oracle. The code snippets from SO were downloaded using
StackExchange!. A SO post may contain several code blocks, where
each code block may contain several lines of code. Hence, for each
SO post listed in the oracle, we extracted the code snippet within
the start and end line according to the oracle. In the cases where a
single SO post contained more than one snippet in clone pairs, we
separately extracted the code forming individual SO snippets.

Ihttps://archive.org/details/stackexchange

Denis Sousa, Matheus Paixao, Chaiyong Ragkhitwetsagul, and Italo Uchoa

The Java projects from the Qualitas benchmark were downloaded
from the official website?. We downloaded the release version
20130901r, which is the same one used to create the oracle [32]. In
total, the Qualitas benchmark used in this empirical study contains
111 projects, including 166,709 Java files and a total of 19,614,083
lines of code. The only preprocessing step performed in the Quali-
tas code was the removal of code comments and the application of
pretty printing® to normalize the code structure.

In summary, our evaluation dataset consists of 323 snippets from
SO with known clones among the Qualitas projects. Thus, each SO
code snippet is considered a query to be searched in Siamese. In the
context of this paper, to evaluate a certain parameters’ configura-
tion, we need to: i) index all Qualitas projects into Siamese; ii) use
Siamese to search each of the 323 queries and store the suggestions;
and iii) compute the MOP and MRR metrics for the entire oracle.

4.3 Search Algorithms

For this empirical evaluation, we selected one multi-objective algo-
rithm and three baseline algorithms. The multi-objective algorithm
selected for this paper was NSGA-II [9]. We believe such a classic al-
gorithm fits the exploratory nature of this evaluation, which seeks
to find out how search algorithms perform in the new problem
of multi-objective code clone configuration. For the baseline algo-
rithms, we employed Grid Search, Random Search, and Bayesian
Search. These algorithms are commonly used in parameter opti-
mization tasks, especially in the machine learning domain [47, 50].

For the Grid Search algorithm, a domain specialist must select
a pre-defined set of values in the search space (a grid), which the
algorithm will exhaustively explore. We use code clone detection
literature and their prior knowledge to define parameters they be-
lieved would yield good results. We chose the n-gram size values of
{4, 6, 8}, qr threshold values of {8, 10}, the boosting values of {-1, 10},
the minCloneSize values of {6, 10} and the two sets of simThreshold
values of {{20%,40%,60%,80%}, {30%,50%,70%,90%}}. The Grid Search
algorithm performs an exhaustive search within the reduced search
space defined in the grid. Hence, its execution time and results
are deterministic. For this reason, to ensure a fair comparison be-
tween algorithms, the Grid Search execution time was used as the
stopping criterion for the other algorithms. In the computational
infrastructure used to run our study, the average time to evaluate a
single parameter’s configuration was 66 seconds. The total number
of parameter combinations in the grid is 3,072. Hence, the Grid
Search algorithm took approximately 54 hours to execute.

For the Random Search, we generated parameters’ configurations
in a random fashion. For each parameter, we randomly sampled
a value using a uniform distribution. New random configurations
were generated and evaluated until the stopping criterion of 54
hours was reached.

Different than Grid and Random Search, the Bayesian Search is
guided by a fitness function. Hence, we had to employ a weighted
approach to combine MOP and MRR into a single metric. To enhance
diversity, we used three different weighting strategies. For Bayesian-
EQ, the weights given to MOP and MRR are equal. Bayesian-MOP
favors the MOP metric, with a {0.7, 0.3} weight ratio between MOP

2http://qualitascorpus.com/download/
3https://astyle.sourceforge.net

https://archive.org/details/stackexchange
http://qualitascorpus.com/download/
https://astyle.sourceforge.net

Code Clone Configuration as a Multi-Objective Search Problem

-
0.7
0.6 1
0.5
[N
Qo4
—— Grid Search
0.31 Random Search
—— Bayesian-EQ
024 — Bayesian-MRR
—— Bayesian-MOP
0.17 — NSGA-II

055 0.60 0.65 070 0.75 0.80 0.85 0.90
MRR

Figure 1: Pareto fronts obtained by the search algorithms.

and MRR, respectively. Similarly, Bayesian-MRR favors the MRR
metric with a weight ratio of {0.3, 0.7} between MOP and MRR.

For NSGA-II, we used tournament selection, single-point crossover,
uniform random mutation, and a population of size 10. We chose
a small population size because of the time it takes to evaluate an
individual’s fitness. As previously mentioned, the average time to
evaluate a single configuration (individual) is 66 seconds. In this
scenario, a large population size would extrapolate the 54-hour time
limit in a few generations. Thus, with the goal of better exploring
the search space, we prioritized a larger number of generations
over a large population.

Given the large amount of time to finish a single execution of
a search algorithm, the non-deterministic algorithms included in
this empirical evaluation (Random Search, Bayesian Search, and
NSGA-II) were executed only once. We address this threat to the
study’s validity in Section 6.

After executing the search algorithms, we calculate the Pareto
fronts of the algorithms. We also calculate the hypervolume (HV)
from a reference point that dominates all other points, known as the
nadir point, in order to compare the obtained Pareto fronts.. This
guarantees that the extreme points of the Pareto front have a non-
zero contribution to the total hypervolume [4]. For this study, using
an offset of 0.01, the nadir reference point to compute hypervolume
is (MOP = 0.759, MRR = 0.913).

5 RESULTS

RQ1: What is the performance of search algorithms in the
Multi-objective Code Clone Configuration problem?

Figure 1 presents the Pareto fronts obtained by the search algo-
rithms included in this empirical evaluation. Overall, it is clear that
the Grid Search algorithm achieved the worst results. All the points
in its Pareto front are dominated by the Pareto fronts obtained
by the other algorithms. This demonstrates the configurations de-
signed by specialists were far from optimal, indicating the need for
automated parameter optimization.

Random Search achieved much better results than Grid Search.
When compared to the fitness-guided algorithms, the Pareto front
obtained by Random Search is only slightly worse for the MOP
metric and virtually the same for the MRR metric.

Based on a visual analysis, all the other algorithms achieved
similar results. This is demonstrated by how their Pareto fronts are

ESEM ’24, October 24-25, 2024, Barcelona, Spain

intertwined with each other. All the weighted Bayesian variations
and NSGA-II achieved MOP and MRR values around 75% and 92%,
respectively. To differentiate these algorithms, we need to look at
their hypervolume.

Table 2 presents the hyper-
volume values for each search
algorithm. In this context, the
lower the hypervolume the bet-
ter. As expected from the vi-
sual analysis, the hypervolumes
computed for Grid and Random
Search are the highest, indicat-
ing the worst-performing algo-

Table 2: Hypervolumes
of each search algorithm.

Search Algorithm HV

Grid Search 0.330
Random Search 0.025
Bayesian-MRR 0.024

Bayesian-EQ 0.017
rithms. The lowest hypervol- Bayesian-MOP 0.018
ume value is 0.01523, referring NSGA-II 0.015

to NSGA-II, closely followed by

Bayesian-EQ. With these results,

among all the search algorithms included in our empirical evalua-
tion, we can conclude that NSGA-II achieved the best performance
for the problem of multi-objective code clone configuration.

Response to RQ1: The NSGA-II multi-objective algorithm achieved
the best performance for the problem of multi-objective code clone
configuration.

RQ2: How do the optimized configurations compare to the
default configuration?

To answer RQ2, we compare Siamese’s default configuration to
optimized configurations found by NSGA-II, which was the best-
performing search algorithm, as depicted in RQ1. For the optimized
configurations, we selected the configurations in the Pareto front
that achieved the highest MOP and MRR values. In addition, we also
selected the configurations that strike the best balance between
MOP and MRR. Table 3 presents the parameters’ values for the
default and optimized configurations followed by the MOP and
MRR values they achieved.

As one can see from the table, the optimized configurations
achieved higher values of MOP and MRR when compared to the
default configuration. When comparing the optimized configura-
tions with the highest MOP and MRR to the default, the optimized
configurations show improvements of 71.08% and 46.29% for MOP
and MRR, respectively. The configurations with the best balance
between the fitness functions present better MOP (68.51% higher)
and MRR (40.76% higher) compared to the default. When looking
at the optimized configurations with the highest MOP and MRR,
one can clearly see the trade-off between the fitness functions. This
indicates how the objectives are conflicting, exacerbating the need
for automated multi-objective optimization.

When analyzing the parameters’ values, one can draw interesting
observations. The n-gram size for all optimized configurations is
17, where the default configuration is 4. This may indicate that the
clones between SO and Qualitas rarely contain added or removed
tokens within the statements. Thus, the longer n-gram size of 17
can capture the sequence of clones better than the shorter one (i.e.,
4). Considering the gr threshold for the original code representation
(qOr), the values are vastly different between the configurations
with the highest MOP and MRR values. While the configurations

ESEM ’24, October 24-25, 2024, Barcelona, Spain

Denis Sousa, Matheus Paixao, Chaiyong Ragkhitwetsagul, and Italo Uchoa

Table 3: Siamese’s default and optimized configurations found by NSGA-II followed by the MOP and MRR values.

Configuration Parameters MOP MRR
nGs qOr qT1 qT2 qT3 bOr bT1 bT2 bLT3 mCS sTh
Default 4 0 10 10 10 1 4 4 4 6 50%60%70%80% 0437 0.616
17 2 4 20 12 14 4 4 10 13 60%70%80%,90% 0.747 0.580
NSGA-II (MOP) 17 2 4 20 12 20 4 4 10 13 60%70%80%90% 0747 0.580
7 12 12 20 12 14 4 4 10 7 10%30%40%50% 0.096 0.902
7 12 4 8 2 14 4 4 10 7 10%30%40%50% 0.096 0.902
NSGA-II (MRR) 17 12 4 20 12 14 4 4 10 7 10%30%40%50% 0.096 0.902
17 12 12 8 12 14 4 4 10 7 10%30%40%50% 0.096 0.902
17 12 4 8 6 14 4 4 10 7 10%30%40%50% 0.096 0.902
17 2 4 8 12 20 4 4 12 7 60%70%80%90% 0736 0.868
17 2 4 20 2 20 4 4 12 7 60%70%80%90% 0736 0.868
NSGA-II (Balanced) |, 2 4 8 2 20 4 4 12 7 60%70%80%90% 0736 0.868
17 2 12 20 2 20 4 4 12 7 60%70%80%90% 0736 0.868

with the highest MOP present qOr = 2, the ones with the highest
MRR present gOr = 12. For the other gr threshold parameters
(qT1, qT2, qT3), the values vary, even within configurations that
achieved the same MOP and MRR values. This indicates that, for
this oracle, the only gr threshold that influences the results is gOr.
This observation complements the discovered large n-gram size of
17. It shows that the original code representation, i.e., the source
code text, has the strongest effect on the clone search result.

One can see an interesting relationship between the minClone-
Size and the simThreshold parameters. The default configurations
establish a minimum clone size of 6 lines and a moderate similarity
threshold. To achieve higher precision (MOP), the minimum clone
size was raised to 13 with a higher similarity threshold. With this
configuration, Siamese is more careful in its recommendations. To
achieve high recall (MRR), the strategy is the opposite. While low-
ering the similarity threshold, the minimum clone size is raised to
7. This indicates that Siamese managed to achieve high recall look-
ing for longer clones. Importantly, the balanced solutions achieved
higher values of MOP and MRR while still employing stricter param-
eters, having higher clone sizes, and higher similarity thresholds.

Response to RQ2: The optimized configurations achieved improve-
ments of 71.08% and 46.29% for MOP and MRR, respectively. The
balanced configurations achieved better MOP and MRR while employ-
ing stricter parameters.

6 THREATS TO VALIDITY

Because of its preliminary and exploratory nature, our empirical
study’s validity is affected by some threats, which are discussed
according to Wohlin et al. [46] guidelines on experimentation.
Conclusion and Internal threats: Due to resource and time con-
straints, we could only run each algorithm once. As a result, we were
not able to perform statistical analyses to assess the algorithms’ per-
formance. To mitigate this threat, we performed a careful analysis
of the results found during each algorithm’s execution. Construct
threats: We consider two threats to the construct validity. First,
we chose Siamese, a state-of-the-art rank-based clone detector, as
a clone search tool in this study. Second, our oracle is composed

of real-world online clones from Stack Overflow and open-source
projects. External threats: We employed a single clone detector
and clone oracle. Thus, the results may not be generalized. The
Qualitas corpus is over ten years old, so the code snippets in the
Oracle may not represent modern Java applications. To improve
the generalization, other rank-based clone detectors and additional
oracles should be included in the study.

7 NEXT STEPS

In future work, we will add more multi-objective algorithms and
increase the number of algorithm executions. We will also improve
our infrastructure and parallelize Siamese’s execution using sur-
rogate models [10, 45] to reduce the time necessary to evaluate
the parameter’s configuration. Hence, we can execute the non-
deterministic algorithms more times, allowing for statistical analy-
ses. In addition, we will also conduct additional empirical studies
with more clone detection tools and more oracles.

8 CONCLUSION

In this paper, we introduced emerging results of the Multi-objective
Code Clone Configuration problem, where the parameters of a rank-
based clone detector are optimized to balance precision and recall.
We employed multi-objective and baseline search algorithms using
a previously published oracle of real-world online clones between
StackOverflow and open-source projects. We chose Siamese as our
rank-based clone detector.

Our results showed that NSGA-II was the best-performing algo-
rithm according to hypervolume. In addition, we also compared the
NSGA-II optimized configurations to Siamese’s default configura-
tion. Our analyses demonstrate that the optimized configurations
obtained better precision and recall, achieving 71.08% and 46.29%
higher MOP and MRR, respectively. Our finding paves the way
for better configurations of code clone detection tools in future
empirical studies.

ACKNOWLEDGEMENTS

This work received partial funding from CNPg-Brazil, Universal
grant 404406/2023-8, and support from CAPES - Funding Code 001.

Code Clone Configuration as a Multi-Objective Search Problem

REFERENCES

(1]
(2]

=

=
A

[11]

[12

[13]

[17]

(18]

[19]
[20]
[21]

[22

[23]

[24]

[25]

[26]

[27]

[28]

2015. Simian - Similarity Analyzer. http://www.harukizaemon.com/simian.
Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 289-305.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577-591.

Nicola Beume, Boris Naujoks, and Michael Emmerich. 2007. SMS-EMOA: Mul-
tiobjective selection based on dominated hypervolume. European Journal of
Operational Research 181, 3 (2007), 1653-1669.

Magiel Bruntink, Arie Van Deursen, Remco Van Engelen, and Tom Tourwe. 2005.
On the use of clone detection for identifying crosscutting concern code. IEEE
Transactions on Software Engineering 31, 10 (2005), 804-818.

Muslim Chochlov, Gul Aftab Ahmed, James Vincent Patten, Guoxian Lu, Wei Hou,
David Gregg, and Jim Buckley. 2022. Using a nearest-neighbour, BERT-based
approach for scalable clone detection. In ICSME °22. IEEE, 582-591.

James R Cordy and Chanchal K Roy. 2011. The NiCad clone detector. In 2011
IEEE 19th International Conference on Program Comprehension. IEEE, 219-220.
KAPSER Cory. 2006. Cloning Considered Harmful’Considered Harmful. In Pro-
ceedings of the 13th Working Conference on Reverse Engineering (WCRE 2006).
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182-197.

Katharina Eggensperger, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
2015. Efficient benchmarking of hyperparameter optimizers via surrogates. In
Proceedings of the aaai conference on artificial intelligence, Vol. 29.

Nils G6de and Rainer Koschke. 2009. Incremental clone detection. In CSMR "09.
IEEE, 219-228.

Muhammad Hammad, Onder Babur, Hamid Abdul Basit, and Mark van den Brand.
2021. Clone-advisor: recommending code tokens and clone methods with deep
learning and information retrieval. Peer] Computer Science 7 (2021), e737.
Muntasir Hoq, Yang Shi, Juho Leinonen, Damilola Babalola, Collin Lynch, Thomas
Price, and Bita Akram. 2024. Detecting ChatGPT-Generated Code Submissions
in a CS1 Course Using Machine Learning Models. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1, Vol. 3487. ACM,
526-532.

Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2009.
Clonedetective-a workbench for clone detection research. In ICSE °09.
IEEE, 603-606.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654-670.

Cory J. Kapser and Michael W. Godfrey. 2008. Cloning considered harmful con-
sidered harmful: patterns of cloning in software. Empirical Software Engineering
13, 6 (Dec 2008), 645-692.

Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code
examples. In ICSE '14. 664-675.

Kisub Kim, Dongsun Kim, Tegawendé F Bissyandé, Eunjong Choi, Li Li, Jacques
Klein, and Yves Le Traon. 2018. FaCoY — A Code-to-Code Search Engine. In ICSE
’18. 946-957.

Rainer Koschke. 2007. Survey of research on software clones. Duplication,
Redundancy, and Similarity in Software - Dagstuhl Seminar 06301 (2007), 24.
Jens Krinke and Chaiyong Ragkhitwetsagul. 2021. Code Similarity in Clone
Detection. In Code Clone Analysis. Springer Singapore, 135-160.

Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In
ICSE ’12. 310-320.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjaVu: a map of code duplicates on GitHub.
OOPSLA "17 1 (Oct 2017), 1-28.

Adriaan Lotter, Sherlock A Licorish, Bastin Tony Roy Savarimuthu, and Sarah
Meldrum. 2018. Code reuse in stack overflow and popular open source java
projects. In ASWEC ’18. 141-150.

Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: code recommendation via structural code search. OOPSLA ’19 3 (Oct
2019), 1-28.

Christopher Manning, Raghavan Prabhakar, and Hinrich Schiitze. 2009. An
Introduction to Information Retrieval. Vol. 21. Cambridge University Press.
Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi Sato, and Ken-ichi
Matsumoto. 2002. Software quality analysis by code clones in industrial legacy
software. In Proceedings Eighth IEEE Symposium on Software Metrics. IEEE, 87-94.
Jin-woo Park, Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, and Sunghun
Kim. 2014. Surfacing code in the dark: an instant clone search approach. Knowl-
edge and Information Systems 41, 3 (Dec 2014), 727-759.

PMD. 2012. PMD’s Copy/Paste Detector (CPD) 5.0. July 14 2012.

[29

[30

(31

[32

@
&

&
=

[40

[41]

[42]

[43

=
&

[45

[46

[47]

(48]

[49

[50]

[51]

[52]

[53

ESEM ’24, October 24-25, 2024, Barcelona, Spain

Chaiyong Ragkhitwetsagul. 2018. Code Similarity and Clone Search in Large-Scale
Source Code Data. Ph.D. Dissertation. University College London.

Chaiyong Ragkhitwetsagul and Jens Krinke. 2019. Siamese: scalable and incre-
mental code clone search via multiple code representations. Empirical Software
Engineering 24, 4 (2019), 2236-2284.

Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. 2018. A comparison
of code similarity analysers. Empirical Software Engineering 23, 4 (Aug 2018),
2464-2519.

Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco, and
Rocco Oliveto. 2019. Toxic code snippets on stack overflow. IEEE Transactions on
Software Engineering 47, 3 (2019), 560-581.

Chaiyong Ragkhitwetsagul and Matheus Paixao. 2022. Recommending Code
Improvements Based on Stack Overflow Answer Edits. arXiv preprint
arXiv:2204.06773 (2022).

Chaiyong Ragkhitwetsagul, Matheus Paixao, Manal Adham, Saheed Busari, Jens
Krinke, and John H Drake. 2016. Searching for configurations in clone evaluation—
a replication study. In SSBSE ’16. 250-256.

Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (Jul
2013), 1165-1199.

J. Regehr. 2010. Static Analysis Fatigue. https://blog.regehr.org/archives/259.
Chanchal K. Roy and James R Cordy. 2007. A Survey on Software Clone Detection
Research. Technical Report. 115 pages.

Chanchal K. Roy, James R. Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470-495.

Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina V.
Lopes. 2018. Oreo: detection of clones in the twilight zone. In ESEC/FSE 2018.
354-365.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. Sourcerercc: Scaling code clone detection to big-code. In ICSE ’16.
1157-1168.

Denis Sousa, Matheus Paixao, Ragkhitwetsagul Chaiyong, and Uchoa Italo.
2024. Replication Package for the paper: “Code Clone Configuration as a Multi-
Objective Search Problem”. https://zenodo.org/records/13694413

Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. Qualitas Corpus: A Curated Collection
of Java Code for Empirical Studies. In APSEC ’10. 336—-345.

Ellen M Voorhees, Dawn M Tice, et al. 1999. The TREC-8 Question Answering
Track Evaluation.. In TREC, Vol. 1999. 82.

Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for better
configurations: a rigorous approach to clone evaluation. In FSE ’13. 455-465.
Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. 2016. Two-stage
transfer surrogate model for automatic hyperparameter optimization. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I 16.
Springer, 199-214.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Jia Wy, Xiu-Yun Chen, Hao Zhang, Li-Dong Xiong, Hang Lei, and Si-Hao Deng.
2019. Hyperparameter optimization for machine learning models based on
Bayesian optimization. Journal of Electronic Science and Technology 17, 1 (2019),
26-40.

Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. How
do developers utilize source code from stack overflow? Empirical Software
Engineering 24 (2019), 637-673.

Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. 2017. Stack Overflow
in Github: Any Snippets There?. In MSR ’17.

Tong Yu and Hong Zhu. 2020. Hyper-parameter optimization: A review of
algorithms and applications. arXiv preprint arXiv:2003.05689 (2020).

Ahmed Zerouali, Camilo Velazquez-Rodriguez, and Coen De Roover. 2021. Identi-
fying versions of libraries used in stack overflow code snippets. In 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR). IEEE, 341—
345.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In ICSE ’19, Vol. 2019-May. 783-794.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are code examples on an online q&a forum reliable?: a study
of api misuse on stack overflow. In 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). IEEE, 886—896.

http://www.harukizaemon.com/simian
https://zenodo.org/records/13694413

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Multi-objective Code Clone Configuration
	3.1 Fitness Functions
	3.2 Example of Fitness Computation
	3.3 The MC3 Problem Formulation

	4 Empirical Methodology
	4.1 Siamese
	4.2 Clone Oracle
	4.3 Search Algorithms

	5 Results
	6 Threats to Validity
	7 Next Steps
	8 Conclusion
	References

