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ABSTRACT
Non-trivial software systems are commonly developed using more
than a single programming language. However, multi-language
development is not straightforward. Nowadays, tools powered by
Large LanguageModels (LLMs), such as ChatGPT, have been shown
to successfully assist practitioners in several aspects of software
development. This paper reports a preliminary study aimed to
investigate to what extent ChatGPT is being used in multi-language
development scenarios. Hence, we leveraged DevGPT, a dataset
of conversations between software practitioners and ChatGPT. In
total, we studied data from 3,584 conversations, comprising a total
of 18,862 code snippets. Our analyses show that only 18.33% of
the code snippets suggested by ChatGPT are written in the same
programming language as the primary language in the repository
where the conversation was shared. In an in-depth analysis, we
observed expected scenarios, such as 31.54% of JavaScript snippets
being suggested in CSS repositories However, we also unveiled
surprising ones, such as Python snippets being largely suggested
in C++ repositories. After a qualitative open card sorting of the
conversations, we found that in 70% of them developers were asking
for coding support while in 57% developers used ChatGPT as a tool
to generate code. Our initial results indicate that not only LLMs are
being used in multi-language development but also showcase the
contexts in which such tools are assisting developers.
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1 INTRODUCTION
Software programs are symbolic expressions depicted in a program-
ming language, describing the tasks practitioners want the com-
puter to perform [1]. Managing complexity is essential in program-
ming. Developers build abstractions to hide details and establish
conventional interfaces, enabling software system construction. A
programmer’s ability to create abstractions depends on the features
and design choices of the programming language [1]. Thus, differ-
ent programming languages vary in their strategies for handling
complexity, with some providing features that better fit certain
categories of software problems.

Multi-language software development (MLSD) consists of em-
ploying more than one programming language to develop a soft-
ware system [5, 19]. MLSD is a choice effortlessly justifiable by the
increasing flexibility of combining the complementary strengths
of different programming languages [13, 14, 19]. MLSD has been a
predominant practice for years [12, 15, 21]. In fact, a study showed
that considering both industry and open-source, over 80% of soft-
ware projects employ two or more languages [9, 23]. However,
MLSD is not straightforward. Research points to several challenges
faced by practitioners, such as the use of multiple programming
languages significantly increasing bug proneness [6], the occur-
rence of design smells involving communication between different
technologies [27], and specific languages that are statistically more
defect-prone when used in a multi-language setting [10, 13].

With the advent of powerful Large Language Models (LLMs),
AI-based assistant tools to aid practitioners in coding are becom-
ing widely adopted. Recent research shows that LLMs have been
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assisting practitioners in a variety of challenges, from dealing with
bugs [11], recommending meaningful names [16], automated docu-
mentation [17], code comprehension [20], and code summaries [24].

In this context, our intuition suggested that software practition-
ers may have been using ChatGPT to assist in MLSD tasks. Hence,
this paper sets out to systematically investigate the extent to which
this perception is accurate. By performing this empirical study,
we expect to validate whether and how practitioners are using
ChatGPT in MLSD, which, in turn, will shed light on and motivate
further studies regarding MLSD and LLMs.

To this end, we leveraged DevGPT [26], a dataset of conversa-
tions between software practitioners and ChatGPT, which includes
links to the GitHub repositories from which the conversations were
originally shared. We studied data from 3,584 conversations, com-
prising a total of 18,862 code snippets suggested by ChatGPT.

Based on our findings, only 18.33% of the code snippets ChatGPT
suggests to practitioners are written in the repository’s primary
programming language. In addition, an in-depth analysis of the
languages in which the snippets suggested by ChatGPT were writ-
ten showcases interesting remarks. While we observed expected
scenarios, such as 31.54% of JavaScript snippets being suggested in
CSS repositories, we also unveiled surprising ones, such as Python
snippets being largely suggested in C++ repositories. In addition,
we performed an open card sorting procedure on a sample of the
conversations to find out the most common contexts ChatGPT sug-
gests snippets in a different language. As a result, we found that
in 70% of the conversations developers were seeking coding sup-
port regarding a different language while in 57% developers used
ChatGPT as a tool to generate code in different languages.

2 BACKGROUND
2.1 Multi-language Software Development
Multi-language software development (MLSD) consists of employ-
ing more than one programming language to develop a software
system [5, 19]. Utilising multiple programming languages in large-
scale software development has been a predominant practice for
years [12, 15, 21]. This approach allows, in principle, employing a
language-as-a-tool: using distinct languages to solve specific prob-
lems and combining the complementary strengths of different lan-
guages to solve different software problems. A survey suggested a
rather universal usage of MLSD among open-source projects, with
a mean number of 5 programming languages used per project [18].

However, MLSD is not straightforward. Its practice introduces a
considerable number of additional challenges related to increased
complexity and the need for proper interfaces and interactions be-
tween the different languages and environments [2]. The software
engineering research community has provided common patterns
and guidelines to support the development, maintenance, and evolu-
tion of such systems [3–6, 15], but it has hardly covered the demand.
Hence, modern technologies and tools, such as LLMs and ChatGPT,
may be sought by practitioners to assist in these challenges.

2.2 The DevGPT Dataset
DevGPT is a recently published dataset comprised of conversations
between software practitioners and ChatGPT [26]. The conversa-
tions were shared by the practitioners themselves throughOpenAI’s

shared links1. A shared link is a feature that allows users to gener-
ate a unique URL for a ChatGPT conversation, which can then be
shared with friends, colleagues, and collaborators.

DevGPT collects conversations shared on different mediums. At
the time of writing this paper, DevGPT is composed of conversa-
tions shared on GitHub and HackerNews. For GitHub, the dataset
collects conversations shared on the body of textual Files (source
code, README, etc), Commit messages, Issues, Pull Requests, and
Discussions. For this paper, we consider each location in which a
conversation can be shared on GitHub as a different source.

Within a certain conversation, we have access to all the prompts
written by the practitioner and all the responses given by ChatGPT,
including eventual code snippets it may have suggested. For each
suggested snippet, ChatGPT also identifies the programming lan-
guage inwhich the snippet is written.We refer to this as the snippet
language. DevGPT also provides metadata regarding the reposi-
tory in which the conversation was shared, such as URL, name, etc.
Most importantly for this study, it also provides the repository’s
primary programming language, as identified by GitHub itself. We
refer to this as repository language.

For this paper, we define native snippet as a code snippet sug-
gested by ChatGPT in which the snippet’s and repository’s pro-
gramming language is the same. Accordingly, we define foreign
snippet as a code snippet that is written in a programming language
other than the repository’s language. By characterizing native and
foreign snippets, we can investigate the extent in which ChatGPT
is being used in MLSD scenarios.

For example, consider the conversation in the following shared
link2. This conversation was originally shared in a pull request3
of the Darklang4 project, where developers are building a new
programming language and infrastructure “to make it easy to build
backends and CLIs”. Even though the Darklang project is primarily
written in F#, this conversation resulted in three C# snippets being
suggested by ChatGPT. Upon close inspection of this pull request
(see Section 3.3), a reviewer mentioned the F# solution proposed
by the developer was ‘overkill’, suggesting one of the C# snippets
provided by ChatGPT as more adequate. For this conversation, F#
is the repository’s native language. Hence, the three C# snippets
suggested by ChatGPT are considered foreign snippets. One could
argue that the developer didn’t specify the usage of F# in the prompt,
but not only ChatGPT replied with a snippet in the language it saw
most fit, but the developer used the C# solution instead of asking
ChatGPT to create a new solution in F#.

3 EMPIRICAL METHODOLOGY
This study aims to answer the following research questions:

• RQ1: To what extent does ChatGPT suggest native and for-
eign snippets to practitioners?

• RQ2: What is the distribution of programming languages in
foreign snippets suggested by ChatGPT?

• RQ3: In which contexts do foreign snippets emerge in con-
versations between ChatGPT and practitioners?

1https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq
2https://chat.openai.com/share/2a6f10f0-d45d-4e71-ac57-584570baeda8
3https://github.com/darklang/dark/pull/5063
4https://github.com/darklang/dark

https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq
https://chat.openai.com/share/2a6f10f0-d45d-4e71-ac57-584570baeda8
https://github.com/darklang/dark/pull/5063
https://github.com/darklang/dark
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Figure 1: Empirical methodology employed in this paper

To answer our research questions, we followed the empirical
methodology illustrated in Figure 1. We made the data, code and ar-
tifacts generated in this study available in a replication package [7].

3.1 Step 1: Language Spelling Normalization
To identify native and foreign snippets suggested by ChatGPT, we
need to compare the primary programming language in a project’s
repository and the language in which a suggested snippet is writ-
ten. Hence, we took the DevGPT dataset (snapshot 20231012) and
considered only the conversations shared within GitHub. Since the
HackerNews conversations are not linked to a specific repository,
its data does not fit our study.

In the dataset, the data regarding each different GitHub source
is presented in a separate JSON file. First, we extracted each reposi-
tory’s primary language using the RepoLanguage attribute. Second,
we extracted the programming language of each snippet using the
Type attribute within the ListOfCode object. Finally, we created
a unique list of all programming languages listed as a repository
or snippet language. In total, there were 75 and 125 programming
languages listed as repository and snippet languages, respectively.

We noticed the languages’ spelling was not uniform. For instance,
JavaScript appeared as ‘javascript’ and ‘js’.We also noticed language
extensions listed as standalone languages, such as ‘jsx’, which is a
JavaScript extension. To address this, we created a list of synonyms
to group different spellings of each programming language. This
list was manually created by the authors in an iterative manner.

Using this list, we normalized the language spelling in the JSON
files throughout repositories and snippets. After normalization, our
dataset contains 72 repository languages and 100 snippet languages.

3.2 Step 2: Native and Foreign Snippets Analysis
Using the normalized JSON files as input, we executed a Python
script to identify the native and foreign snippets suggested by
ChatGPT. For each JSON, we grouped conversations by repository
language. Consider the conversations shared in commit messages
within repositories whose primary language is JavaScript, for ex-
ample. After processing the commits JSON, we identified 7 conver-
sations, in which 78 code snippets were suggested by ChatGPT. For
each snippet, we checked the language the snippet was written.
Snippets written in JavaScript were considered native and snip-
pets written in other languages were considered foreign. Using
this procedure, we identified 18 and 60 native and foreign snip-
pets, respectively. These results indicate that, for conversations
shared within commit messages of JavaScript repositories, Chat-
GPT suggestions consisted of 23.08% and 76.92% of native and
foreign snippets, respectively.

We performed this analysis for all JSON files and all program-
ming languages in our dataset. Finally, we combined the results
of all JSONs to get an understanding of the data as a whole. The
results of this step were used to answer RQ1 and RQ2.

3.3 Step 3: Qualitative Investigation
To fully explore developers’ usage of ChatGPT in MLSD scenar-
ios, only employing quantitative analyses (RQ1 and RQ2) is not
sufficient. In this manner, a qualitative investigation may assist in
obtaining an in-depth understanding of the contexts in which Chat-
GPT suggests foreign snippets. To achieve this goal, we employed
an open card sorting procedure on a sample of the conversations
where foreign snippets were suggested.

Card sorting is a thematic analysis approach where participants
categorize similar items into different groups [22]. An item can be
in more than one group. In this study, we categorize conversations
where ChatGPT suggested a foreign snippet, aiming to identify the
conversation context the snippet emerged. The context indicates
the overall theme, such as ‘coding support’ and ‘documentation
writing’. Closed card sorting, where participants categorize into
predefined contexts, was not feasible due to the exploratory na-
ture of this study. Thus, we employed open card sorting, allowing
participants to freely create groups to categorize the conversations.

To avoid personal biases in qualitative investigations, the data
must by analyzed independently by more than one person [25].
Given the subjective nature of open card sorting, we selected three
participants to independently perform the procedure. To ensure
different background and levels of expertise, we selected one under-
graduate, one master’s student and one PhD candidate in computer
science. All participants had previous experience using ChatGPT.

To ensure all participants fully understood open card sorting,
we prepared a presentation and ran a pilot study. For the pilot, we
randomly sampled 10 conversations in which ChatGPT suggested
a foreign snippet. Next, we asked the participants to perform open
card sorting as a group, i.e., to categorize the 10 conversations
into thematic groups and provide a description for each created
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group. In total, the pilot study took 40 minutes. The participants
were asked to provide comments and feedbacks. These were later
incorporated into the study’s design.

Since the goal of our open card sorting is to identify the contexts
in which foreign snippets emerge, we only considered conversa-
tions in which foreign snippets were suggested by ChatGPT. To
enhance the confidence that the conversations actually impacted
the projects’s code bases, we limited open card sorting to conversa-
tions originating from GitHub sources that are closely related to
source code, namely Files, Commits and Pull Requests. Hence, in
total, the population for our qualitative investigation consisted in
1340 conversations, where 737 (55%), 483 (36%) and 121 (9%) origi-
nated from Files, Commits and Pull Requests, respectively. Next, we
took a stratified statistically significant sample with 95% confidence.
This resulted in a sample of 300 conversations (165 from Files, 108
from Commits and 27 from Pull Requests).

Our open card sorting consisted in each of the three participants
independently categorizing the 300 conversations in our sample
into different thematic contexts. Participants were free to create as
many context as they wanted, but could only categorize a conver-
sation in up to three contexts to ensure consistency. Finally, each
participant wrote a description of each context. After the partici-
pants concluded their sorting, one of the authors with knowledge
in both software development and LLMs acted as a mediator, tasked
with analyzing the contexts, identifying similarities and merging
the categorizations. This resulted in a unique categorization of con-
versations into contexts based on the three independent sortings.

4 EMPIRICAL RESULTS
4.1 RQ1:To what extent does ChatGPT suggest

native and foreign snippets to practitioners?
Due to space constraints, we could not include the results for all pro-
gramming languages in the paper. Hence, to select which languages’
results to present, we first counted the total number of snippets
for each language in the dataset. Next, we ranked the languages by
the number of snippets and selected the languages above the third
quartile in the distribution. This resulted in 18 languages whose
total number of suggested snippets sums up to 16,965, consisting
of 89.94% of the 18,862 total snippets in the dataset.

Table 1, presents the number of snippets and the percentage of na-
tive snippets for each language and each GitHub source. Languages
marked with an asterisk (*) were only identified in repositories, not
in snippets. This is likely due to the language identification process
being different in the repositories and snippets. We discuss this
matter in more detail in the Threats to Validity section.

Consider the CSS language, for instance. We identified 4,017 snip-
pets suggested in conversations shared in Files. Out of these snip-
pets, only 8.84% are native, i.e., snippets written in CSS. When con-
sidering the suggested snippets in CSS repositories in all datasets,
only 7.26% of snippets are native. This indicates that 92.74% of the
snippets suggested by ChatGPT for CSS repositories are written in
other languages. When looking at other languages, we can observe
a similar pattern. For C++ and JavaScript, 79.90% and 76.16% of
suggested snippets are foreign, respectively. However, there are
exceptions, such as the C# and CodeQL languages, in which one
can observe 60.18% and 58.08% of native snippets.

CSS Python C# C++ JavaScript Go Assembly Java Rust SQL
Snippet's language
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Figure 2: Distribution of foreign snippets suggested within
repositories of different primary languages

As an answer to RQ1, we have shown that more than 75% of snip-
pets suggested by ChatGPT are foreign, i.e., snippets in languages
other than the repository’s primary language. This indicates that,
most of the time, conversations between practitioners and ChatGPT
are related to multiple languages. This evidences how ChatGPT is
being employed in MLSD scenarios. In RQ3, we qualitatively inves-
tigate the contexts foreign snippets are suggested by ChatGPT.

4.2 RQ2: What is the distribution of
programming languages in foreign snippets
suggested by ChatGPT?

Figure 2 showcases the distribution of foreign snippets suggested
by ChatGPT in conversations with practitioners. The Y axis indi-
cates the primary languages of the repositories while the X axis
represents the languages in which snippets were suggested. A cell’s
darkness is proportional to the number of snippets suggested in
a certain language. In CSS repositories, for example, there were
more snippets suggested in JavaScript than in CSS. Differently, al-
most all snippets suggested in C# repositories were written in C#.
To improve the visualization, we only included in the figure the
languages with most repositories and snippets.

By looking at the figure, some of the observations were expected,
such as the strong relationship between CSS and JavaScript. Consid-
ering all foreign snippets suggested for CSS repositories, 31.54% are
written in JavaScript. Other results were unexpected. For instance,
C++ repositories were found to have a large occurrence of Python
snippets. However, the opposite is not true. In Python repositories,
the most popular foreign snippets are written in JavaScript.

The recurrent pattern within the data showcases close to uniform
distribution of foreign snippets into multiple languages. Consid-
ering the entire dataset, for all languages (not only the ones in
the figure), the average number of unique foreign languages is 10.
This is a strong indicator of how MLSD is indeed prevalent in the
software industry with ChatGPT being an important tool to assist
developers in their MLSD tasks.

As an answer to RQ2, our results show that in general, foreign
snippets are written in several different languages (average of 10+),
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Table 1: Number of snippets and percentage of native snippets for different languages and different GitHub sources in which
the snippets were shared. Languages marked with an asterisk (*) were only identified in repositories, not in snippets.

Repository Language Files Commits Issues Pull Requests Discussions Total

Snippets Native (%) Snippets Native (%) Snippets Native (%) Snippets Native (%) Snippets Native (%) Snippets Native (%)

CSS 4,017 8.84 1,284 2.18 13 23.08 0 - 0 - 5,314 7.26
Python 1,028 48.25 153 31.37 653 43.49 286 19.23 45 46.67 2,165 41.76
HTML 1,590 4.65 99 8.08 105 15.24 4 25.00 27 0.00 1,825 5.43
C# 1,231 60.03 0 - 13 76.92 2 0.00 2 100.00 1,248 60.18
C++ 802 28.30 0 - 28 42.86 391 1.79 3 0.00 1,224 20.10
JavaScript 604 21.69 78 23.08 208 32.21 44 13.64 10 30.00 944 23.84
Jupyter Notebook* 742 0.00 0 - 21 0.00 0 - 2 0.00 765 0.00
C 694 5.04 8 75.00 56 28.57 0 - 1 100.00 759 7.64
Go 487 57.29 6 0.00 23 21.74 17 47.06 8 0.00 541 53.97
Batch 453 0.22 7 0.00 0 - 0 - 0 - 460 0.22
Dockerfile 237 2.53 76 0.00 0 - 0 - 0 - 313 1.92
TypeScript 49 46.94 0 - 183 14.21 36 36.11 30 13.33 298 22.15
Assembly 297 6.40 0 - 0 - 0 - 0 - 297 6.40
Java 101 19.80 0 - 67 35.82 76 5.26 0 - 244 19.67
CodeQL 167 58.08 0 - 0 - 0 - 0 - 167 58.08
Rust 118 55.09 0 - 36 47.22 0 - 2 0.00 156 52.56
ShaderLab* 123 0.00 0 - 0 - 0 - 0 - 123 0.00
SQL 119 34.45 0 - 3 100.00 0 - 0 - 122 36.07
Total 12,859 25.42 1,711 17.46 1,409 37.03 856 18.51 130 29.00 16,965 23.18

which indicates the prevalence of MLSD and the important role
ChatGPT currently has within practitioners.

4.3 RQ3: In which contexts do foreign snippets
emerge in conversations between ChatGPT
and practitioners?

Table 2 presents the contexts in which foreign snippets are sug-
gested by ChatGPT according to our qualitative investigation. For
each context, the table provides a short description, the number
of conversations categorized into the context and an example of
a conversation. In total, 9 distinct contexts were identified by the
open card sorting participants. As previously mentioned, each con-
versation was categorized in up to three contexts. Based on our
results, the average number of contexts in which a conversation was
categorized is 1.76. This indicates that most of the MLSD-related
conversations practitioners have with ChatGPT are non-trivial.

Within the sample of 300 conversations, the Coding Support
context was identified in 212 (70%), configuring the most identified
context. This result indicates that most of the suggested foreign
snippets were triggered by coding issues in a language the developer
may not be fully proficient (since it is not the primary language in
the repository). The selected example for this context showcases
a conversation where a developer of a project primarily written
in F# looked for support regarding a C# snippet. According to the
developer in the original pull request, the C# solution was more
adequate for the situation when compared to the F# ‘overkill’.

Another popular context is Configuration Support, with 98
total conversations. This context represents situations where de-
velopers may be proficient in a certain language but are not quite
as knowledgeable regarding the coding environment. For instance,
as one can see in the table, the developer of a web app needed
assistance regarding bash commands to update the project’s Node
dependencies. Due to space constraints, we are not able to discuss
all contexts into details. Nevertheless, we believe the descriptions
and examples provided in the table (alongside the full results in our

replication package [7]) showcase the wide range of contexts in
which foreign snippets are suggested by ChatGPT.

As an answer to RQ3, we identified a total of 9 contexts in which
ChatGPT suggests foreign snippets to developers. Out of these,
Coding Support, Code Generation and Configuration Support
were the most popular. This indicates that foreign snippets sugges-
tions are more often triggered by conversations where developers
need assistance to fix and/or generate code in a foreign language.

5 DISCUSSION
Our findings on RQ1 indicate a substantial appearance of foreign
snippets among developers’ conversations, with over 75% of the
code suggestions provided by ChatGPT being in languages different
than the repositories’ primary language. This trend suggests that
developers are not only seeking assistance with many languages but
are also exploring and/or integrating solutions across these multiple
languages. Such observation is corroborated by our qualitative
investigation of the contexts foreign snippets are suggested (RQ3).
These findings not only reinforce MLSD as a predominant practice
in software development [12, 15, 21] but also indicate how LLMs
will likely be assisting this practice in the future.

The high appearance of foreign snippets in languages like Python
and JavaScript, evidenced in RQ2, can also relate to the high popu-
larity among developers and the interoperability of these languages
[8]. Also, the interaction patterns between languages reveal devel-
opers’ strategic choices in selecting complementary languages that
maximize their productivity and the quality of their solutions.

The large occurrence of contexts such as Coding Support and
Code Generation suggests that developers are actively seeking
out LLM’s assistance for complex development tasks as well as for
routine code generation. This indicates a behavior where devel-
opers are not just passively receiving ChatGPT suggestions but
are actively engaging with the tool to support their work across
various stages of the software development life cycle.

The results of our RQs point out the fact the developers may not
seek as much assistance in languages they are already proficient.
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Table 2: Contexts in which foreign snippets were suggested, according to the open card sorting procedure. For each context, we
provide a short description, the number of conversations and an example of a conversation categorized into the context.

Context Description Conversations Example

Coding Support Coding-related problems, usually debugging and questions related to
the usage of a programming language concepts and libraries. 212 https://chat.openai.com/share/2a6f10f0-

d45d-4e71-ac57-584570baeda8
Code
Generation

ChatGPT is asked to generate code or scripts. Usually, the developer
asks for a code snippet or an entire feature from scratch. 172 https://chat.openai.com/share/5221714a-

7251-4a84-b304-5fd4f72d5fb9
Configuration
Support

The developer commonly asks ChatGPT for help with the project’s
setup and configuration. 98 https://chat.openai.com/share/

ba3847d4-8a7a-4f5e-b798-8a2584a6ccf7
Documentation
Writing

The developer commonly asks ChatGPT to enhance and/or write
documentation regarding a code snippet or feature. 32 https://chat.openai.com/share/8526b242-

9920-43f2-b199-0df1700ffc3a
Code
Refactoring

Scenarios where ChatGPT was asked to refactor a prompted code to
improve its quality. 31 https://chat.openai.com/share/9af123e7-

5522-4d34-aa5f-dd0b891998a2
Conceptual
Questions

For these conversations, developers usually ask about programming
concepts, system engineering concepts and software design. 25 https://chat.openai.com/share/2770bf7b-

9927-4fd5-a675-e34dce7cefc7
Text
Manipulation

Use of ChatGPT to generate, gather, or format text. This is usually
related to data engineering. 19 https://chat.openai.com/share/d3e45c4c-

af65-4bc1-b8b9-d29e907539fe

Testing Support For these conversations, the developer’s main concern was the
implementation, evaluation, and general problems related to testing. 18 https://chat.openai.com/share/

99d2ebdc-613c-4a84-8281-bfc2fe82bc14
Database
Support

Conversations where ChatGPT was asked to provide support in
database queries, data modelling, and administration of a DBMS. 9 https://chat.openai.com/share/2af7029e-

20e1-46e2-9d98-f9072ede7c63

In contrast, developers seem to often seek support for languages
needed in their projects but which they may not be fully capa-
ble yet. To some extent, ChatGPT may serve as a ‘normalizer’ of
programming knowledge, assisting developers to reach a similar
level of proficiency for languages they are not knowledgeable when
compared to languages they are more familiar. Nervertheless, such
an observation needs to be properly investigated in future studies.

6 THREATS TO VALIDITY
We discuss the Threats to Validity according to Wohlin et al. [25]
guidelines on experimentation.

Concerning Conclusion validity, the contexts identified in the
open card sorting procedure and their proportions might not faith-
fully reflect the dataset. To minimize this threat, we drew a stratified
and statistically significant sample with 95% confidence. Regarding
Internal validity, the contexts observed in the conversations are a
product of each participant’s bias and worldview. We mitigated this
threat by selecting participants with different levels of expertise
and different backgrounds.

When considering Construct validity, changes in the reposi-
tory’s after this study was performed, such as the primary language
changing, may affect how these results hold in the future. Addi-
tionally, the identification of repositories’ languages and snippets’
languages are different between GitHub and ChatGPT. Since the
methods used to identify the language are not public, we have
no means of verifying its accuracy. To mitigate this threat, we
performed a manual analysis to identify spelling differences and
normalize the data. Since DevGPT dataset lists the primary lan-
guage simply as the most used language in each repository, we
could not verify the impact of other languages that could be equally
important, from the developers’ perspective, but less used.

Finally, regarding External validity, it is possible that our re-
sults could not be generalized to all software development processes

since our study restricts to analyzing the DevGPT dataset, which
only contains conversations that developers were willing to share.
Nevertheless, our results align with previous studies on the sub-
ject of MLSD, encouraging a broader analysis of the impact of
LLM-based tools on software development. To foster this research
direction, we provide a full replication package of our study [7].

7 CONCLUSIONS AND FUTUREWORK
In this paper, we set out to investigate data from conversations
between software practitioners and ChatGPT to provide insights
regardingMulti-Language Software Development (MLSD). By lever-
aging the DevGPT dataset, we have shown that most (75%) of snip-
pets suggested by ChatGPT are written in a foreign language, i.e., a
programming language different than the primary language in the
repository where the conversation originated. Additionally, by exe-
cuting an open card sorting procedure, we have identified 9 distinct
contexts in which foreign snippets were suggested. In general, the
usage of ChatGPT in MLSD scenarios are mostly related to seeking
programming support for other languages and generating code in
other languages.

As the next steps of our research, we envision the extension of
our methodology, creating a new dataset based on DevGPT but
without its limitations, an so, augmenting our capacity to study
both Multi Language and Single Language Software Development
and compare them side-by-side. In addition, we plan to expand
our qualitative analyses to encompass other nuances regarding
developers’ usage of ChatGPT within MLSD, analysing in depth
the used prompts and prompt engineering techniques.
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