
MicroSensor: Towards an Extensible Tool for the Static Analysis
of Microservices Systems in Continuous Integration
Edson Soares

Instituto Atlântico
State University of Ceará

Fortaleza, Brazil
edson_soares@atlantico.com.br

Matheus Paixao
State University of Ceará

Fortaleza, Brazil
matheus.paixao@uece.br

Allysson Allex Araújo
Federal University of Cariri
Juazeiro do Norte, Brazil

allysson.araujo@ufca.edu.br

ABSTRACT

In the context of modern Continuous Integration (CI) practices,
static analysis sits at the core, being employed in the identification
of defects, compliance with coding styles, automated documenta-
tion, and many other aspects of software development. However,
the availability of ready-to-use static analyzers for microservices
systems and focused on developer experience is still scarce. Current
state-of-the-art tools are not suited for a CI environment, being dif-
ficult to setup and providing limited data visualization. To address
this gap, we introduce our software product under progress called
𝜇Sensor: a new open-source tool to facilitate the integration of
microservice-based static analyzers into CI pipelines as modules
with minimal setup, where the resulting reports can be viewed on
a webpage. By doing so, 𝜇Sensor contributes to data visualization
and enhances the developer experience.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Microservices; Continuous Integration; Static Analysis

ACM Reference Format:

Edson Soares, Matheus Paixao, and Allysson Allex Araújo. 2024. MicroSen-
sor: Towards an Extensible Tool for the Static Analysis of Microservices
Systems in Continuous Integration. In Companion Proceedings of the 32nd
ACM International Conference on the Foundations of Software Engineering
(FSE Companion ’24), July 15–19, 2024, Porto de Galinhas, Brazil. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3663529.3663874

1 INTRODUCTION

With a global market size valued at 2,073 million in 2018, and
projected to reach 8,073 million by 2026 [4], the microservices
architecture stands out in the software engineering landscape. Mi-
croservices projects require a great deal of supporting tools, making
use of both Continous Integration (CI) and Continuous Delivery
(CD) approaches in their development lifecycle.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0658-5/24/07
https://doi.org/10.1145/3663529.3663874

CI and static analysis walk hand in hand in modern software
development. By leveraging CI’s infrastructure to easily build a
project’s source code, static analyzers can be integrated to evaluate
the project’s quality and provide automated feedback for developers.
Although the modernization of CI and static analysis brought to life
some notable open-source and commercial tools such as SonarQube,
Semgrep, Checkmarx, Snyk, CodeGuru, and Coverity, none deal
with microservices-specific smells.

In this context, the development of state-of-the-art static analysis
tools has flourished, where the microservices domain has not been
left behind. One can find static analysis tools for the identification
of microservice-specific code smells [5], maintaining microservice-
based systems [1], and migration towards a microservice architec-
ture [3]. Nevertheless, the current state-of-the-art static analyzers
for microservices are not yet ready to be integrated into a CI envi-
ronment.

To address this gap, we propose 𝜇Sensor1, a new open-source
tool aimed at facilitating the integration of microservices-related
static analyzers into CI pipelines. 𝜇Sensor runs on the GitHub
Actions2 platform. GitHub Actions allow the automation of tasks
based on various triggers (e.g., commits, pull requests, issues, etc.),
making it easier for developers to automatically build, test, and de-
ploy software projects. In addition, GitHub Actions does not require
the installation of any additional software and can be integrated
into several other resources in the GitHub ecosystem. By leveraging
GitHub Actions, 𝜇Sensor can be integrated into the CI pipeline of
any project hosted on GitHub without any local installation.

To showcase our tool’s architecture and features, we first incor-
porated a state-of-the-art microservices code smells detector [5]
into 𝜇Sensor. Next, we selected 9 GitHub projects and integrated
𝜇Sensor into the CI pipelines of all selected projects.

2 THE 𝜇SENSOR TOOL

𝜇Sensor serves as a platform to make static analysis tools read-
ily available for CI pipelines. By incorporating a new (or existing)
static analyzer into 𝜇Sensor, the approach will be able to enjoy all
of 𝜇Sensor’s existing CI-related infrastructure, such as building
capabilities, trigger configuration, self-hosting, and web-based vi-
sualization. 𝜇Sensor can bridge the gap between a static analyzer
prototype and its release to real-world practitioners in a modern CI
infrastructure. 𝜇Sensor’s architecture is organized into two main
components: the Scanner and the Renderer.

1https://github.com/microsensorproject/microsensor
2https://github.com/features/actions

https://orcid.org/0000-0002-6911-8029
https://orcid.org/0000-0002-1775-7259
https://orcid.org/0000-0003-2108-2335
https://doi.org/10.1145/3663529.3663874
https://doi.org/10.1145/3663529.3663874
https://github.com/microsensorproject/microsensor
https://github.com/features/actions


FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Edson Soares, Matheus Paixao, and Allysson Allex Araújo

2.1 Static Analysis Scanner
The responsibilities of this component are to allow multiple ana-
lyzers to be plugged in as modules, execute all of 𝜇Sensor’s static
analyzers, and collect their results. To tackle the difficulty of coordi-
nating the proper execution of several static analyzers, each having
its own running environment, 𝜇Sensor makes use of container-
based solutions. For each static analyzer in 𝜇Sensor, the Scanner
has a Docker image with the necessary running environment for
the static analyzer to properly execute and generate its results.

To incorporate a static analyzer into 𝜇Sensor’s Scanner, one
needs to: (i) create a Docker image with the running (and possibly
building) environments for the analyzer, and (ii) write a few lines
of shell script within the Scanner’s code to execute the analyzer in
the Scanner’s pipeline and export the results.

2.2 Visualization Renderer
The responsibilities of this component are to process the outputs
of each static analyzer and provide a visualization of the results. To
address this goal, 𝜇Sensor uses micro frontends [2] and leverages
resources from the GitHub ecosystem. After the static analysis re-
sults are made available by the Scanner, the Renderer will process
the outputs and automatically generate a web app. Next, the web
app is deployed into GitHub Pages. To create the results’ visual-
ization for a new (or existing) static analyzer within the Renderer,
one needs to provide a micro frontend that processes the results
and creates the visualization. Each micro frontend is an indepen-
dent web project within the Renderer. From a UI perspective, the
website will have different tabs for accessing the visualization of
each static analyzer’s results.

Figure 1 summarizes 𝜇Sensor’s execution flow. After the work-
flow event is triggered, 𝜇Sensor will check out the latest version
of the project’s source code. Next, the Scanner will create Docker
containers for each static analyzer, where the analyses will be ex-
ecuted and the results will be exported. The Renderer will then
process the static analysis results, create a web visualization, and
automatically publish it into the repository’s GitHub Pages.

GitHub Pages

Workflow Trigger

Renderer

Scanner

μSensor

Checkout

Figure 1: 𝜇Sensor Architecture and Execution Flow

3 EVALUATION

3.1 Integrating a Static Analyzer into 𝜇Sensor

To showcase 𝜇Sensor’s ability to incorporate static analyzers into
its architecture, we chose MSANose [5], a state-of-the-art code
smells detector for microservices systems. Even though MSANose
is capable of detecting a wide array of microservices code smells,

it presents a few shortcomings regarding its developer experience
in a CI environment. MSANose requires a local Java and Spring
Boot installation for its execution. In addition, MSANose results
are presented as a JSON file, lacking any data visualization. To
incorporate MSANose into 𝜇Sensor, we followed the instructions
depicted in Section 2.

3.2 Integrating 𝜇Sensor into CI pipelines

Due to MSANose’s limitations, we selected Java-based systems
based on Spring Boot to develop the microservices. To this end, we
explored GitHub using keywords such as ‘microservices’ and
‘spring boot’. We made sure that all projects we looked at had a
reasonable number of stars as a proxy for non-trivial projects. As
a result, we selected nine projects, where we integrated 𝜇Sensor
to the CI pipelines to each of them, respectively: Apollo (26.8k
stars), Conductor (4.5k stars), Spring Cloud Alibaba (24.1k stars),
Spring Consul (744 stars), Micro-Company (333 stars), Sitewhere
(889 stars), MyCollab (1.1k stars) for project and document man-
agement, Abixen (640 stars), and Genie (1.6k stars). For each one
of these projects we have a specific 𝜇Sensor report (see this exam-
ple3 for Apollo, in particular). Due to space limitations, we can’t
display all the experiment information. However, all other reports,
including the GitHub links and project descriptions, are open and
available in our repository4 as evidence concerning the viability of
our proposal.

4 FINAL REMARKS AND NEXT STEPS

This paper aims to introduce 𝜇Sensor, an open-source tool to fa-
cilitate the integration of microservices-specific static analyzers
into CI pipelines. Our future work includes improving integration
with multiple state-of-the-art tools with the adoption of integration
standard formats (e.g., GitHub SARIF), expanding support to other
CI platforms, and offering customization for practitioners.

ACKNOWLEDGMENTS

This work received funding from CNPq - Brazil, Universal grant
404406/2023-8.

REFERENCES

[1] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Ludovico
Iovino, and Amleto Di Salle. 2017. Microart: A software architecture recovery tool
for maintaining microservice-based systems. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW). IEEE, 298–302.

[2] Severi Peltonen, Luca Mezzalira, and Davide Taibi. 2021. Motivations, benefits, and
issues for adopting Micro-Frontends: A Multivocal Literature Review. Information
and Software Technology 136, July 2020 (aug 2021), 106571.

[3] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni. 2019. Tool
support for the migration to microservice architecture: An industrial case study.
In European Conference on Software Architecture. Springer, 247–263.

[4] Vineet Kumar Rachita Rake. 2020. Microservices Architecture Market Statistics -
2026. https://www.alliedmarketresearch.com/microservices-architecture-market.
Accessed: 2022-05-24.

[5] Andrew Walker, Dipta Das, and Tomas Cerny. 2020. Automated Code-Smell
Detection inMicroservices Through Static Analysis: A Case Study. Applied Sciences
10, 21 (2020). https://doi.org/10.3390/app10217800

Received 2024-03-15; accepted 2024-04-26

3https://microsensorproject.github.io/apollo
4https://github.com/microsensorproject/microsensor/blob/development/evaluation.
md

https://www.alliedmarketresearch.com/microservices-architecture-market
https://doi.org/10.3390/app10217800
https://microsensorproject.github.io/apollo
https://github.com/microsensorproject/microsensor/blob/development/evaluation.md
https://github.com/microsensorproject/microsensor/blob/development/evaluation.md

	Abstract
	1 Introduction
	2 The Sensor Tool
	2.1 Static Analysis Scanner
	2.2 Visualization Renderer

	3 Evaluation
	3.1 Integrating a Static Analyzer into Sensor
	3.2 Integrating Sensor into CI pipelines

	4 Final Remarks and Next Steps
	References

