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ABSTRACT

Automated identification of self-admitted technical debt (SATD) has
been crucial for advancements in managing such debt. However,
state-of-the-arts studies often overlook chronological factors, lead-
ing to experiments that do not faithfully replicate the conditions
developers face in their daily routines. This study initiates a chrono-
logical analysis of SATD identification through machine learning
models, emphasizing the significance of temporal factors in auto-
mated SATD detection. The research is in its preliminary phase,
divided into two stages: evaluating model performance trained on
historical data and tested in prospective contexts, and examining
model generalization across various projects. Preliminary results
reveal that the chronological factor can positively or negatively
influence model performance and that some models are not suffi-
ciently general when trained and tested on different projects.
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1 INTRODUTION

In the software development process, decisions favoring shortcuts
often lead to Technical Debt (TD) accumulation. This notion was
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initially proposed by Cunningham in 1992 2], associating TD with
low-quality artifacts produced during the software development
cycle to meet short-term demands. The literature offers various
works [5] for TD accumulation management. Code debt, the pri-
mary type, arises from deadlines, competition, and cost pressures,
leading developers to compromise code quality for short-term gains.

A commonly used approach to identify TD is analyzing com-
ments in source code. Potdar et al. [4] conducted a study on SATD,
where developers themselves acknowledge the existence of TD and
express them through comments in the source code or other project
management tools. Since then, several works have been dedicated
to the automated identification of SATD [6] in various software
artifacts, such as code comments, pull requests, commits etc.

Machine learning (ML) models, such as those utilized in iden-
tifying TD [1], aim to aid software teams in early detection and
management of SATD. However, current literature experiments
often employ a random selection process for training and testing,
which doesn’t accurately mirror real development environments.
This methodology overlooks project-specific nuances and dynam-
ics, potentially leading to outdated models ill-suited to modern
practices and languages. Thus, using these models outside their
original design contexts can greatly diminish their effectiveness.

Concerns arise about the generalization of SATD identification
models beyond temporal data challenges. When developers lack
sufficient data for training specific SATD identification models in
new projects, they may resort to using datasets from previous or ex-
ternal projects. However, the effectiveness of these models trained
with external data becomes uncertain, as they may struggle to cap-
ture the nuances of the new project context. This can significantly
hinder their ability to accurately identify SATD.

This study aims to experimentally assess ML model performance
when trained on historical data and tested in a future temporal con-
text, reflecting developers’ need for TD identification tools trained
on diverse projects. Additionally, it seeks to analyze how well these
models generalize to new projects by exploring the feasibility of
training them with datasets from different projects. The study aims
to address specific research questions:

(RQ1:) To what extent is the performance of the ML models
affected when trained on historical data and evaluated in a
future temporal setting?

(RQ2:)To what extent is the generality of SATD models af-
fected when trained and tested with cross-projects datasets?
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2 METHODOLOGY

2.1 Data Collection and Machine learning
Models

In this research, we used the dataset from Maldonado et al. [3], a
widely employed resource in SATD identification [6]. This dataset
comprises ten open-source Java projects. However, this dataset does
not contain chronological data regarding the insertion of SATD.
Therefore, to incorporate the temporal factor into our analysis,
through bash commands, we supplemented the dataset by collect-
ing insertion dates of source code comments, enriching it with
temporal information. Only seven out of the ten projects had avail-
able chronological data for collection. The dataset used in this
study includes the projects apache-ant-1.7.0 (Ant), argouml (Argo),
emf-2.4.1 (EMF), hibernate-3.3.2 (Hibernate),jfreechart-1.0.19 (JFC),
jruby-1.4.0 (JR), and sql12 (SQL). It spans from 1998 to 2021 and
contains 37,414 SATD instances, i.e., source code comments and
their labeled debt type. As an ML model for SATD identification,
we used the two most used models to identify TD according to
the systematic review carried out by Albuquerque et al. [1]. The
selected models were Naive Bayes (NB) and Random Forest (RF).

2.2 Experimental Setup

2.2.1 Phase 1: Initially, we split each project’s dataset into two
temporal segments: a training set (70%) representing old data and a
testing set (30%) representing newer data. The stratified division
was done project-wise, with D1 (Train) containing older comments
and D2 (Test) containing newer ones. This method improves model
evaluation across different timeframes. We employ project-specific
partitioning instead of random assignment to assess model perfor-
mance within each project’s timeline. We aim to reveal potential
performance differences between training on historical data and
testing on future data, illuminating temporal dynamics in software
development. For comparison, we employ both Random (R) and
Chronological (C) data partitioning for training and testing.

2.2.2 Phase 2: We aimed to assess the model’s generalization
across different projects, irrespective of chronological data order.
To evaluate their adaptability, models were trained (Training) on
one project’s data and tested (Test) on another’s. The percentage of
data allocated for training and testing was standard, 70% and 30%,
respectively. Results from this approach were compared to those
from training and testing within the same project. By identifying
and analyzing any differences in results, we gained insights into the
models’ effectiveness and generalization across diverse contexts.

3 PRELIMINARY RESULTS

(RQ1:) Due to space constraints, only a subset of results is presented.
Table 1 shows the time gap between training and testing sets had
varying impacts on different projects. For “argouml” and “sql12,”
this gap consistently decreased model performance metrics, while
for “hibernate,” it increased all metrics. These findings highlight
the importance of considering the nature of data when choosing
a validation strategy. Additionally, the RF model demonstrated
good performance across all projects in random and chronological
validation scenarios, indicating its robustness and suitability for
classification tasks in diverse contexts. We believe that this differ-
ence is due to the fact that the majority of Hibernate data comes
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from the same year, making the data have a narrower chronological
range. A more in-depth study of these nuances is necessary.

Table 1: Results with random and chronological data.

. Accuracy  Precision Recall F1 Score

Project Sample
NB RF NB RF NB RF NB RF
Areo R 90% 94% 88% 94% 90% 94% 88% 93%
& C 67% 91% 87% 89% 67% 91% 73% 90%
SOL R 96% 98% 96% 97% 96% 98% 95% 97%
C 86% 96% 95% 96% 86% 96% 89% 95%
Hibernate R 85% 93% 81% 92% 85% 93% 80% 92%
C 90% 98% 95% 97% 90% 98% 92% 97%

(RQ2:)

Analysis reveals various scenarios for model performance when
trained on one project and tested on another, as shown in Table 2. In
some cases, we observe a significant drop in algorithm performance,
while performance remains relatively stable in others. The RF yields
superior results compared to NB, regardless of the testing scenario,
highlighting its robustness and generalization capability across
different data contexts. These findings underscore the importance
of careful model selection and testing strategy to ensure reliable
and consistent results in practical applications.

Table 2: Results for cross-project data.

. Accuracy  Precision Recall F1 Score
Trainig Test
NB RF NB RF NB RF NB RF
Ant Argo 85% 72% 85% 78% 85% 75% 85% 79%
JR EMF 98% 96% 98% 97% 98% 97% 98% 97%

4 FUTURE WORK

Our future goal is to evaluate existing models or tools for identi-
fying SATD and apply our methodology to different datasets. The
complete results are provided in our supporting package'.
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