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ABSTRACT
In today’s fast-paced software industry, understanding and manag-
ing Technical Debt (TD) is crucial for software development. TD
can compromise the long-term quality of software systems. The
occurrence of TD is commonly reported and discussed by practi-
tioners on Question and Answers (Q&A) platforms, such as Stack
Overflow (SO). Data from Q&A platforms has been leveraged by
the TD research community, most prominently regarding knowl-
edge extraction. However, manual analyses of such data not only
require considerable effort but also suffer from biases. Hence, this
paper aims to propose an automated approach for identifying and
classifying types of TD in SO discussions using machine learning
(ML) and natural language processing. We divided our methodol-
ogy into four main steps: i) data preprocessing, ii) application of
natural language processing, iii) application of ML algorithms, and
iv) computing the evaluation metrics for the proposed models. Our
results indicate that ML algorithms have the potential to be success-
fully applied to automatically identify and classify TD types on SO
discussions. We achieved a recall of 85% for test debt and a precision
of 78% for design debt. Furthermore, the results of automated TD
identification on SO benefit the software development community
by enhancing solution quality, raising awareness of best practices,
and facilitating collaboration among developers. This leads to more
efficient development and the promotion of consistent standards.
We make our entire dataset and pre-trained models available to
encourage future research directions.

CCS CONCEPTS
• General and reference → Empirical studies; • Software and
its engineering → Maintaining software.
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1 INTRODUCTION
The choice of shortcuts during software development can gener-
ate Technical Debt (TD), which needs to be managed to keep its
accumulation under control [8] . Nowadays, TD has been divided
into several types, each of which refer to a certain debt that can be
accumulated during different phases of the software development
lifecycle. Common types of TD are code debt, infrastructure debt,
architectural debt and testing debt. Recent studies have aimed to ac-
quire knowledge and provide insights regarding TD by identifying
TD elements and classifying their types [15, 21, 28, 31]. Manag-
ing TD is essential for the long-term health of software systems.
However, many organizations lack established TD management
practices. Project managers and developers need tools and methods
to strategically address TD, which can be challenging due to the
complexity of software development practices and the diverse data
involved [2].

The quest for practical knowledge about TD has driven investiga-
tions to Question and Answer platforms (Q&A). Through both quan-
titative and qualitative approaches, several studies [6, 12, 13, 19, 33]
have investigated Q&A platforms to identify elements of TD, most
of them through manual analysis. For instance, Gama et al. [12]
analysed discussions on SO to understand how practitioners debate
issues regarding TD. They performed a manual analysis of 140 dis-
cussions. Despite being a widely used technique in scientific work,
manual analysis tends to be labor-intensive and can introduce bias
in result interpretation. It requires the involved methodology to be
well-defined and followed rigorously to ensure the reliability of the
process. Nevertheless, even when used following the best possible
practices, manual analysis does not scale to large amounts of data.
Without a strategy to automatically identify and filter TD-related
data from large text collections, the research contributions will be
limited.

Hence, this paper aims to propose an automated approach for
the identification and classification of TD types in SO discussions
throughML and natural language processing. By leveraging labelled
data from previous studies, we trained different ML models to not
only identify an instance of TD discussion but also the type of TD
being discussed. We considered a thorough experimental setup to
identify the best performing model.

The main contributions of this work are listed as follows:
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• Providing pre-trained models to automatically identify and
classify TD types in OS discussions.

• An analysis of the words most likely to refer to different
types of TD.

We believe that our contribution has the potential to boost the
research involving knowledge extraction regarding TD on SO and
Q&A platforms in general. Future work can leverage our models to
filter TD-related data from large text collections.

The remainder of this paper is organized as follows: Section 2
provides the background, Section 3 discusses related works, Section
4 describes the experimental setup, Section 5 presents the results,
Section 6 addresses implications for future research, and Section 7
concludes the paper.

2 BACKGROUND
In order to substantiate the concepts applied to this work, in this
section, the fundamental components that provide the structure for
this research are presented.

2.1 Technical Debt
TD describes the long-term consequences of shortcuts taken during
the software development process to achieve short-term goals [8].
Throughout the software’s lifecycle, TD may occur in different
artefacts depending on when it is incurred and which activity it is
associated with. Considering these aspects, TD is classified into the
following types [31]: design, code, architecture, tests, documenta-
tion, defects, infrastructure, requirements, people, build, process,
automated tests, usability, service, and versioning.

2.2 Stack Overflow
SO is a Q&A platform that has gained prominence among comput-
ing professionals for facilitating discussions primarily related to
the software development phase. Questions can be answered by
multiple users, leading to discussions regarding the topic. Consid-
ering SO users [35], the discussions held on the platform not only
represent a vast community of practitioners but also contain valu-
able information for advancing knowledge in software engineering
and computer science as a whole [3]. The data generated through
SO’s questions and answers has been utilised in various areas such
as microservices [4], automated documentation enhancement [36],
IDE (Integrated Development Environment) improvement [25], and
mobile development [32], to mention only a few [1].

2.3 Natural Language Processing
Natural Language Processing (NLP) is related to the development
of computational models for performing tasks that rely on infor-
mation expressed in natural languages [7]. This branch of artificial
intelligence is divided into three main aspects: Sound (related to
morphology), Structure (related to morphology and syntax), and
Meaning (related to semantics and pragmatics). NLP techniques can
be leveraged to enhance ML classifiers by providing efficient data
preprocessing techniques and vectorisation strategies, for instance.

2.4 Predictive Analysis and ML
Predictive analysis is a type of analysis performed on large databases
that involves extracting information from data to forecast trends

and behaviour patterns. The aim of this technique is to determine
the potential future outcome of an event or even the probability of
a condition occurring [26].

Predictive analysis encompasses ML algorithms, which include
predictive classification and regression models, including algo-
rithms such as Random Forest, XGBoosting, Gradient Boosting, Multi-
nomial, and SVC. These models have been selected due to their
extensive usage within the software engineering and ML commu-
nity [5, 14, 16, 18, 23, 24, 34, 37, 38]. Furthermore, the selected
algorithms exhibit diverse profiles, ranging from algorithms that
use a randomly extracted subset of attributes to algorithms that
combine models to enhance effectiveness. A brief description of
these algorithms is shown below.

• Random Forest algorithm is a classification algorithm that
employs decision trees to perform data mining on a given
dataset. This algorithm creates multiple decision trees using
a randomly extracted subset of attributes from the original
dataset. It has been used for prediction of student learning
effectiveness in software engineering teamwork [24].

• Gradient Boosting is a ML model formed through the combi-
nation of weak models, such as shallow decision trees [17].
In comparison to Random Forest, this algorithm becomes
more robust against overfitting. It has been used in software
engineering for test code reuse considering object-oriented
parameters [34].

• XGBoosting is an enhanced, faster, and better-performing
version of Gradient Boosting [14]. This algorithm can was
applied in the identification of blocking bugs in software
development [5].

• MultinomialNB is an algorithm commonly used for text clas-
sification [16, 18]. This multi-class classifier produces accu-
rate results within a short time frame, utilising a minimal per-
centage of training data. This algorithm was used to predict
the severity of defect reports in software maintenance [38].

• The SVC algorithm (C-Support Vector Classification) is im-
plemented based on SVM (Support Vector Machine). The
concept behind this algorithm is to draw a hyperplane that
separates the two sets with a margin [23]. SVC has been used
to predict software quality [37].

3 RELATEDWORK
The work more related to the one reported in this paper is the one
by Kozanidis et al. (2022) [19], where the authors applied NLP and
ML techniques to 415 SO discussions about TD. The study aimed
to deepen the understanding of TD by focusing on types of TD,
question duration, perceived urgency and sentiments. However, the
models considered within the evaluation did not achieve reliable
values, with an average precision, recall, and F1-Score of around
50%. Such results invalidate the usage of the models in subsequent
research efforts in the topic.

A combination of NLP and static analysis for early detection
of TD was used in Rantala’s work (2020) [29]. The authors aimed
to understand TD from developers’ perspectives by discovering
themes and topics in messages related to TD. The work also pro-
posed a tool for automatic detection of TD using only NLP, but the
study’s data is not related to TD discussions on SO.



Machine Learning for the Identification and Classification of Technical Debt Types on StackOverflow Discussions ISE’23, September, 2023, Campo Grande, Brazil

Maldonado et al. (2017) [9] presented an approach to automat-
ically identify SATD in requirements and design using NLP. The
authors achieved accurate identification of SATD, obtaining 90%
performance in classification using only 23% of comments related to
requirements debt and 80% using only 9% and 5% of comments for
design and requirements, respectively. In spite of the good results,
the study contemplated only two types of TD.

With the goal of identifying SATD through NLP, Ren et al. (2019)
[30] identified features in source code comments within software
projects using neural networks. The application of neural networks
revealed patterns within the comments that had not been identified
through human analysis. Unlike our study, Ren et al. in addition
to using source code comments as a data source, also applied NLP
through neural networks.

Table 1 provides an overview of the main differences and simi-
larities among the related works.

Table 1: Comparison between related work and this paper

Reference Approach Data Source Related Words?

This work Automated Stack Overflow Yes

Kozanidis et al. [19] Manual and
Automated

Stack Overflow Yes

Rantala et al. [29] Automated Source code No

Maldonado et al. [9] Automated Source code Partially yes

Ren et al.[30] Automated Source code Yes

4 EXPERIMENTAL SETUP
This section describes the experimental setup that we employed to
carry on our study. The setup is divided into the following stages:
data collection, data preprocessing and ML execution. The entire
dataset used in this article along with the project containing the
models are available in our replication package [11].

4.1 Data Collection
The database used in this work stems from the manual analysis
performed by Gama et al. [10], where the authors performed a
manual analysis of 372 discussions from SO. For each discussion, the
authors labelled elements such as the type of TD, TD management
activity, and indicators. SO discussions consist of a title, a question,
tags, and answers. Each of these are separate text components that
belong to the same discussion. To build the dataset for this study,
we had to first filter some discussions and then split the discussions
into parts. This process is detailed next.

4.1.1 Phase 1: Filtering discussions without a TD type. For this study,
we want to not only identify the presence of TD in the text but
also classify the type of TD being discussed. Hence, for all the 372
originally labeled discussions, we filtered all discussions in which
no TD type was identified by the authors. After this phase, 320
discussions remained.

4.1.2 Phase 2: Filtering discussions with low-frequency TD types.
The original labelled dataset includes 13 different TD types. How-
ever, some of these types of debt have low frequency in the discus-
sions where they were found. For instance, while code debt was

identified in 170 discussions, defect debt was identified in only 4
discussions. Through a pilot experiment, we observed that TD types
with an incidence of fewer than 10 discussions yielded poor results.
Hence, only TD types that appeared in more than 10 discussions
were considered. After this phase, the dataset contained 301 dis-
cussions related to five TD types: code, infrastructure, architecture,
testing, and design, as detailed in Table 2.

Table 2: TD types considered in this study

.

Debt Type Number of
Discussions

Considering All
Components

Code 170 1287

Infrastructure 56 410

Architecture 42 256

Testing 21 224

Design 12 78

4.1.3 Phase 3: Splitting the discussion’s components. In this study,
we chose to split the discussion’s components into individual records.
Hence, each discussion was split into title, question, tags and an-
swers. The TD type labelled for the discussion was considered
for its individual components. The final dataset reached a total of
2,255 records. Our dataset is comprised of 3 columns (Id, Category,
and Text), where Id represents the identification of the discussion
on the SO platform, Category indicates the TD type found in the
discussion, and Text represents a title, question, tags, or response
belonging to the discussion.

4.2 Data Preprocessing
Initially, the text was subjected to tokenization, a process that
employs algorithms to split sentences into words. This helps with
analysis as each word can be evaluated individually. Following
tokenization, the removal of stopwords was carried out. This
step involves eliminating words from the text that do not signifi-
cantly contribute to its interpretation. SO discussions may contain
alphanumeric characters within their content, therefore, it was nec-
essary to apply the removal of alphanumeric characters.When
transformed into tokens, these characters can make it difficult the
identification of patterns within the data. Lastly, removal of up-
percase characters was performed. To enhance the effectiveness
of converting categorical and numerical data, words with the same
spelling must be uniform. Consequently, tokens were transformed
to lowercase to ensure consistent representation.

4.3 Machine Learning Execution
As this is an initial study, we chose simple algorithms that have
have been used in previous studies. The ML algorithms were imple-
mented using the scikit-learn library1. The selected algorithms are:
Random Forest, Gradient Boosting, XGBoosting, MultinomialNB
and SVC. The results for each algorithm are evaluated through
standard evaluation metrics for ML models: Precision, Recall, and
F1-Score.

The data split between training and testing in this work follows
the standard percentage used by the data analysis community [20],
1scikit-learn: https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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which is 70% for training and 30% for testing. All tokens were
transformed into a vector space, converting categorical data into
numerical data using TF-IDF (Term Frequency – Inverse Document
Frequency) [27]. Discussions with labelled TD type were separated,
and all other discussions were labelled as “not”, indicating that the
label was different from the specified TD.

Considering that the quantity of discussions for each TD type can
vary, we balanced the dataset separately. Data balancing involves
randomly selecting a “not” labelled set with the same number of
records as the TD type. Figure 1 provides an example of the balanc-
ing performed for discussions categorised as infrastructure-related.
When analysing the entire dataset, one can observe that there are
410 records categorised as infrastructure debt and 1845 records
categorised as “not infrastructure debt”. As a balancing alternative,
a subset containing 410 discussions was randomly chosen from the
“not infrastructure debt” set, ensuring that both sets have the same
size.

Figure 1: Example of discussion balancing for the experiment

5 RESULTS
In the following subsections, we present the results obtained in
our experiment. First, we present the results for different TD types.
Next, we present an analysis of the most important terms used to
identify and classify each TD type.

5.1 Results for different TD types
Table 3 presents the results found for each different TD type, we
display the results achieved by the best performing ML algorithm
for the TD type.

The results reveal that the ability to automatically identify TD
types varies based on the TD type being considered. While we
observed a F1-Score of 77% for Tests debt, we also observed a F1-
Score of 60% for code debt. This indicates that some TD types
are easier to identify than others. For the other TD types, such as
Design, Architecture and Infrastructure, we observed F1-Scores
of 66%, 61% and 60%, respectively. Overall, considering the best
performing algorithms for each TD type, we achieved Precision,
Recall and F1-Score of 66%, 67% and 66%, respectively.

Table 3: Results by each TD type

TD Type Precision Recall F1-Score

Tests 71% 85% 77%

Design 78% 61% 68%

Architecture 63% 70% 66%

Infrastructure 63% 58% 61%

Code 57% 63% 60%

Average 66% 67% 66%

Table 4 presents a comparison between the results found in this
study and their corresponding values in Kozanidis et al.’s work.
Through this comparison, it becomes evident that the results in this
study achieved higher percentages in all metrics (Precision, Recall,
and F1-Score). In certain cases, such as the Recall and F1-Score for
code debt, the results achieved by our models are two-fold better
than the ones reported reported in the related work.

Upon observing the results, it is possible to identify that the
highest percentages concerning the evaluation metrics are asso-
ciated with the less frequently occurring debt types within the
discussions. In Kozanidis et al.’s work (2022), the debt type with
the highest average percentage was Build debt, with an average of
68.3%. This debt type had the fewest occurrences, being found in
only 10 discussions. A similar phenomenon occurs in the results
of this study, where testing debt is the second least occurring type
(see Table 2), and it is the type of debt that achieved the highest
percentage concerning the evaluation metrics.

Table 4: Comparison of results between this study andKozani-
dis et al. (2022)

TD Type Precision Recall F1-Score

This
Study

Kozanidis
et al
(2022)

This
Study

Kozanidis
et al
(2022)

This
Study

Kozanidis
et al
(2022)

Tests 71% 58% 85% 75% 77% 66%

Design 78% 36% 61% 36% 68% 36%

Architecture 63% 54% 70% 33% 66% 41%

Infrastructure 63% 42% 58% 55% 61% 48%

Code 57% 28% 63% 23% 60% 25%

5.2 Analysis of Words Related to TD Types
In addition to the results regarding the ML algorithms performance
in classifying TD types, we also performed an analysis of the words
that are more related to certain TD types. Our preprocessing steps
facilitated the generation of word clouds for each TD type. Due to
space constraints, only the word cloud pertaining to “design” debt
is presented in this paper, while the remaining content is available
in our replication package.

The word cloud related to “design” debt is presented in Figure 2.
In the figure, the size of each word is proportional to its frequency,
meaning that larger words are more frequently mentioned in the
text. In this case, words like: “use”, “project”, “need”, “war”, “system”,
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“architecture”, “time”, “will”, “work”, “spring", and “code” were more
prominent, that is, they are common words in discussions of design
TD in SO.

Figure 2: Word Cloud for Design Debt

Figure 3 presents the Sankey diagram [22] containing the syn-
thesis of the top 40 most frequent words in discussions related to
the TD types investigated in this study. In this work, the diagram
was adapted to represent the relationship of each word to its corre-
sponding TD type, where the lines depict the link between the TD
type and the associated word. The thickness of the line indicates
the strength of the relationship.

Figure 3: Sankey diagram for different TD types

From Figure 3, it can be observed that test debt haswordswith the
highest percentage by TD type, such as tests, unit, and testing, where
the total percentage of testing debt reaches 46.8%. Concerning
design debt, the most frequent words within this TD are code, class,
and design, with a total percentage of relevant words in design debt
being 25.8%. The Architecture, Infrastructure, and Code debt types
have a total word percentage of 9.7%, 9%, and 8.3%, respectively.

6 IMPLICATIONS
Implications are typically two-pronged: implications for research
or theory and implications for practice. In this section, we discuss
the contribution of our findings for researchers and practitioners.

6.1 For Researchers
Researchers can use our study results to support efforts in the field
of TD research in software engineering. The proposed approach
for automated analysis can serve as a basis for adaptations and im-
provements in the process. In addition, the approach can contribute
to the agility of the analysis process, enabling the examination of
large volumes of data that would be unfeasible through manual
analysis.

The tests carried out with the proposed algorithms facilitated the
identification of the best algorithm for each type of debt. Therefore,
community efforts to determine the optimal ranking algorithm
for a specific type of debt can be reduced, mitigating the need of
evaluating several algorithms.

6.2 For Practitioners
Industry professionals can benefit from our study’s findings when
considering implementing TD-related practices in their software
engineering projects. The approach can be applied to streamline
the TD identification and approach process, making it possible
to effectively manage technical debt in real-world projects and
increasing the efficiency of software development and maintenance
processes.

In addition, professionals can take advantage of our study results
to optimize their strategies to deal with specific types of TD, since
our tests identified the best algorithm for each type of debt. This can
lead to more effective TD management and reduced development
costs. Finally, practitioners can explore relationships betweenwords
associated with different types of TD and refine their quality criteria
using the these words, which can help improve the overall quality
and maintainability of the software.

7 CONCLUSIONS
In this paper, we proposed an automated approach for identifying
and classifying different types of TD in SO discussions using ML
and natural language processing. The approach enabled the identi-
fication of code, infrastructure, architecture, testing, and design TD
types, achieving results ranging from 60% to 77% in F1-Score, these
values outweigh the results of the baseline work results. The ML
algorithms performance were higher than those in related studies
with similar goals. In addition, we generated word clouds for TD
type, revealing the words most frequently associated with each spe-
cific TD. These words can serve as input for searching for specific
TD types in other data sources.

The study’s limitations include potential issues with construct
validity due to limited metrics, biases in internal validity during
data preprocessing, and a risk of subjectivity in result analysis, as
it was conducted by a single researcher. Additionally, generalizing
conclusions may be challenging beyond our considered dataset.

As future work, we intend to experiment the proposed models
in other datasets not yet used for training automated TD classifiers.
In addition, we plan to leverage the most recurrent words for each
TD type to assist in the combined automated classification with
the proposed algorithms. We also plan to expand our dataset by
combining data from other studies that performed manual analysis
and apply the methodology proposed in this work to include the
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remaining TD types in addition to subjecting the experiment to
deep learning methods and advanced vectorization techniques.
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