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ABSTRACT

Background: Sub-optimal code is prevalent in software systems.

Developers may write low-quality code due to many reasons, such

as lack of technical knowledge, lack of experience, time pressure,

management decisions, and even unhappiness. Once sub-optimal

code is unknowingly (or knowingly) integrated into the codebase

of software systems, its accumulation may lead to large mainte-

nance costs and technical debt. Stack Overflow is a popular website

for programmers to ask questions and share their code snippets.

The crowdsourced and collaborative nature of Stack Overflow has

created a large source of programming knowledge that can be lever-

aged to assist developers in their day-to-day activities.

Objective: In this paper, we present an exploratory study to evalu-

ate the usefulness of recommending code improvements based on

Stack Overflow answers’ edits.

Method:We proposeMatcha, a code recommendation tool that

leverages Stack Overflow code snippets with version history and

code clone search techniques to identify sub-optimal code in soft-

ware projects and suggest their optimised version. By using SOTor-

rent and GitHub datasets, we will quali-quantitatively investigate

the usefulness of recommendations given by Matcha to devel-

opers using manual categorisation of the recommendations and

acceptance of pull-requests to open-source projects.

CCS CONCEPTS

• Software and its engineering→Maintaining software; Soft-

ware evolution.

KEYWORDS

Stack Overflow, Code Recommendation, Code Similarity

ACM Reference Format:

Chaiyong Ragkhitwetsagul and Matheus Paixao. 2022. Recommending Code

Improvements Based on Stack Overflow Answer Edits. In MSR ’22: The 2022

Mining Software Repositories Conference, May 23–24, 2022, Pittsburgh, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/1122445.1122456

∗
The study was accepted at the MSR 2022 Registered Reports Track.

†
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’22, May 23–24, 2022, Pittsburgh, PA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Sub-optimal code is prevalent in software systems, where develop-

ers may write low-quality code due to many reasons, such as lack of

technical knowledge [27], lack of experience [7], time pressure [13],

management decisions [8, 14], and even unhappiness [10]. Regard-

less of the reason behind sub-optimal code, it can unknowingly (or

knowingly [4]) be integrated into the codebase of software systems.

The accumulation of sub-optimal code without proper remedia-

tion or prevention may lead to large maintenance costs [28] and

technical debt [31].

Stack Overflow
1
is a popular website for programmers to ask

questions and share their code snippets. The collaborative nature of

Stack Overflow has created a large source of programming knowl-

edge. As a result, programmers commonly reuse code from answers

in Stack Overflow in their software projects [20, 33, 35]. Although

code snippets from Stack Overflow may contain issues such as se-

curity vulnerabilities [1], API misuses [36], and license-violating

code [20, 35], the crowdsourcing nature of the website allows for

constant community updates that not only optimise the answers’

code but also fix potential issues [6, 30].

Several tools have been created that use the knowledge on Stack

Overflow to assist developers. The tasks for which the tools were

created are varied, such as providing working code examples [11],

showing relevant Stack Overflow posts according to the code con-

text in the IDE [18, 19], or improving API documentation [32].

Following this track, in this paper, we present an exploratory study

to evaluate the usefulness of recommending code improvements

based on Stack Overflow answers’ edits. However, before we detail

our proposal, we present an example from a Stack Overflow post.

1.1 Motivating Example

As a motivating example for this exploratory study, we take a

close look at the Stack Overflow question (and its answers) number

40665315
2
. In the question, the developer is using the Rest Assured

3

library to assist in the writing of unit tests for a REST application

developed with the Spring Boot
4
framework. For this particular

unit test, the developer needs to set the port the service will be

running from, which is the main topic of the question.

For this question, the same developer who asked the question

figured out the solution and posted an accepted answer. The code

snippet for the answer is displayed in Listing 1. The solution found

by the developer can be seen in Line 10, where a method .port()
is used to set the service’s running port and test its status code.

1
https://stackoverflow.com/

2
https://stackoverflow.com/questions/40665315

3
https://rest-assured.io/

4
https://spring.io/projects/spring-boot
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This solution was posted in November 2016, and this code was

displayed on Stack Overflow as the accepted answer for question

40665315. After some time, another answer was posted for this

question by a different user. In the alternative answer, the answerer

argues that the unit test in the accepted answer was setting up

the port every time the test was executed, which was a waste of

resources because, if the class had multiple tests, each test would

need to set the port again. To solve this, the answerer proposed the

creation of a setUp() method that would set the port only once

for all the tests in the class. Hence, in December 2018, the accepted

answer was edited according to the suggestion, and its current code

is displayed in Listing 2. As one can see from Lines 8 to 11, the new

setUp()method was added, and the call for method .port() (Line
15) in the test was removed.

From this example, one can see that the initial solution provided

as the accepted answer, albeit fully functioning, was sub-optimal.

Despite the snippet in today’s answer being an optimised version of

the solution, the sub-optimal solution was displayed as the accepted

answer for two years. During this time, all StackOverflowuserswho

viewed this particular question would use the sub-optimal solution

as the inspiration for their solutions. Moreover, the optimisation

needed to prevent the resource waste is so subtle that it would

not be surprising that other developers would achieve a similar

sub-optimal solution and never realise its potential problems.

For a quick assessment of this assumption, we took the state-

ment causing the sub-optimal behaviour in the first version of the

answer (given().port(port)), and searched GitHub’s search ser-

vice
5
with the statement as a string and filtering for Java projects.

At the time of writing this paper, this query returned 435 results

in GitHub’s search. By looking at the 10 first results, we observed

that 5 of them had no set up method and the port had to be set for

each and every test being executed. The average number of tests in

these classes was 16. In 2 out of the 10 results, there was a set up

method but the port set up was not included as one of the set up

steps. Finally, in 3 out of the 10 results, there was a set up method

with a proper port set up, as suggested in the optimised solution.

As one can see from this example, sub-optimal solutions are

posted (and accepted) on Stack Overflow, and it may take a while

until the solution is optimised by the community. In the meantime,

developers may use the sub-optimal snippets in their own solu-

tions. In some cases, such sub-optimal solutions may be reached

by developers on their own and not necessarily be copied from

Stack Overflow. Regardless of the reason for the sub-optimal code

snippets, the large crowdsourced programming knowledge on Stack

Overflow can be leveraged to benefit developers.

1.2 Study’s Proposal and Research Questions

In this paper, we propose an exploratory study of our approach,

called Matcha, to recommend improvements to sub-optimal code

based on answer edits on Stack Overflow. According to the moti-

vating example, we can see that code snippets in a Stack Overflow

accepted answer evolve over time and some of the accepted answers

are later updated to include code improvements. Matcha operates

in two main steps: 1) Matcha searches for similar code between a

software project’s code and snippets in Stack Overflow answers, 2)

5
https://github.com/search

Matcha recommends the latest version of the answer to developers.

The approach leverages the scalable code clone search technique of

Siamese [20] to retrieve similar code snippets from a large corpus

of Stack Overflow accepted answers. We aim to augment Siamese

to handle multiple revisions of the same code snippet, which is the

case in Stack Overflow answers. Importantly, we will include the

recommendation module in Siamese to be able to return the latest

revision of the code snippet as the search result. We foresee that this

approach will be useful for developers who are unknowingly using

sub-optimal snippets in their software. They can adopt the recom-

mendation to improve the quality of their implementation. Lastly,

we designed this exploratory study to evaluate the usefulness of

the recommendations given by our approach.

In the study, we intend to answer the following research ques-

tions:

• RQ1: How accurate is Matcha’s detection of similar code snippets

between software projects and Stack Overflow answers? (Sanity

Check)

Objective: To checkMatcha’s accuracy regarding the detection

of similar code snippets between software projects and Stack

Overflow answers. The combination of Siamese and the addi-

tional modules (see Section 3) compose the code clone search

engine employed byMatcha. Hence, this serves as a sanity check

for our exploratory study because it evaluates the core underlying

technology behindMatcha.

Evaluation: We will employ the established code clone ground

truth between GitHub projects and Stack Overflow posts pro-

vided by the SOTorrent dataset [2]. By leveraging this dataset, we

will extract the 69,885 Java method clone pairs between GitHub

and Stack Overflow to evaluate the accuracy of Matcha. We

will search for the optimised configurations of Siamese and also

compare the accuracy before and after integrating the boiler-plate

code filter module required by Matcha (explained in detail in

Section 3).

• RQ2: To what extent are the recommendations given by Matcha

useful for developers?

Objective: To assess how often Matcha provides recommenda-

tions with relevant code updates that are useful for developers.

Evaluation:Wewill consider our own dataset of GitHub projects

selected for this exploratory study (see Section 4.3). For each

project in the dataset, we will runMatcha and store its recom-

mendations. Next, the recommendations will be manually classi-

fied according to Baltes et. al’s [3] categorisation of Stack Over-

flow post edits. Finally, the recommendations that are classified

as relevant code updates (e.g., Optimising and Refactoring)
will be considered useful for developers.

• RQ3: To what extent are Matcha’s recommendations accepted in

practice?

Objective: To assess the potential of Matcha being adopted

by real-world developers and integrated into their development

practices.

Evaluation:Wewill select a subset of the recommendations con-

sidered useful in RQ2. For each of the selected recommendations,

we will open a pull-request to the GitHub project containing the

code change and a description of the change according to the

original Stack Overflow post. The outcome of the pull-requests

https://github.com/search
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1 @RunWith(SpringRunner.class)

2 @SpringBootTest(webEnvironment = SpringBootTest.

WebEnvironment.RANDOM_PORT)

3

4 public class SizesRestControllerIT {

5 @LocalServerPort

6 int port;

7

8 @Test

9 public void test2() throws InterruptedException {

10 given().port(port).basePath("/clothes").get("

").then().statusCode (200);

11 }

12 }

13

14

15

16

17

Listing 1: Code from the original accepted answer to Stack

Overflow question number 40665315

1 @RunWith(SpringRunner.class)

2 @SpringBootTest(webEnvironment = SpringBootTest.

WebEnvironment.RANDOM_PORT)

3

4 public class SizesRestControllerIT {

5 @LocalServerPort

6 int port;

7

8 @Before

9 public void setUp() {

10 RestAssured.port = port;

11 }

12

13 @Test

14 public void test2() throws InterruptedException {

15 given().basePath("/clothes").get("").then().

statusCode (200);

16 }

17 }

Listing 2: Code from the updated accepted answer to Stack

Overflow question number 40665315

alongside the discussions between developers will be used to

quali-quantitatively answer this research question.

2 BACKGROUND AND RELATEDWORK

2.1 Recommending Code Snippets

In a recent study, Tang et al. [30] proposed a method to automati-

cally identify comment-edit pairs on Stack Overflow, i.e., comments

in an answer that trigger an edit in the answer. One of the usage

scenarios for the comments-edit pairs envisioned by the authors is

the recommendation of the edits to projects with the same outdated

snippet, where the comment would be used as the natural language

description of the recommendation. The approach proposed in

this related work presents a few shortcomings. First, the answers’

updates considered in the related work are limited to the ones trig-

gered by comments, which excludes all other answers’ edits due to

other reasons, such as the one presented in our motivating example

(see Section 1.1). Differently,Matcha considers all answers edits

on Stack Overflow as candidates for recommendation, enlarging its

pool of optimised snippets. Second, in the related work, only exact

matches (Type-1 clones [24]) between snippets were considered

for recommendation. By leveraging Siamese’s ability to search for

Type-1, Type-2 and Type-3 clones [20, 24], Matcha expands its

ability to find sub-optimal snippets in software projects.

The papers by Ponzanelli et al. [18, 19] present Prompter, an

IDE plugin to recommend Stack Overflow discussions based on the

developer’s current coding context. By leveraging existing search

engines, Prompter identifies relevant discussions based on a pre-

defined threshold. The developer working in the IDE is given the

possibility to open and visualise the Stack Overflow discussion di-

rectly in the IDE. Despite not directly recommending code snippets

to developers, Prompter leverages Stack Overflow’s knowledge to

enhance the developer experience in the IDE by providing more

context to its coding decisions. On a similar note, the work by

Rubei et al. [25] sets out to recommend relevant posts based on the

developer’s coding context. The proposed tool, called PostFinder

focuses on enhancing both Stack Overflow posts and the devel-

oper’s code with additional metadata to boost the matching. The

results indicate how the new features enable the matching of code

context to highly relevant posts. The work by Rahman et al. [23]

proposes RACK, an automated tool focused on API recommenda-

tion from Stack Overflow knowledge. Different from the previously

mentioned work, the RACK tool leverages natural language queries

to search for relevant Stack Overflow posts.

The community working on code recommendations has been

rapidly growing, with papers proposing creative ways to recom-

mend code from sources other than Stack Overflow. Aroma [15] is

a tool that offers code recommendations based on structural code

search. It compares the code query’s parse tree to code snippets in

the index, prune the results, and cluster the remaining results to

give high-quality recommendations. Keivanloo et al. [11] proposes

an approach to find working code examples from a large code cor-

pus on the Internet by using maximal frequent itemset mining and

custom search ranking function. Nyamawe et al. [17] recommend

refactoring solutions by using traceability and code metrics.

2.2 SOTorrent

SOTorrent [2] is the largest dataset of Stack Overflow data to date.

The dataset is created from the Stack Overflow data dump aug-

mented with the version history of Stack Overflow content. The

version history can be retrieved at the level of whole post or indi-

vidual post block. It also contains references of GitHub files to Stack

Overflow posts. The dataset is periodically updated and the latest

version is from December 2020 (version 2020-12-31) containing the

content of 51,296,931 Stack Overflow posts with 81,536,422 post ver-

sions. From our initial analysis, there are 31,659 Java accepted code

answers with revisions. The dataset can be accessed via Google

BigQuery
6
or Zenodo

7
.Matcha uses SOTorrent as a source of code

snippets to recommend code changes.

6
https://console.cloud.google.com/bigquery?project=sotorrent-org

7
https://zenodo.org/record/3746061

https://console.cloud.google.com/bigquery?project=sotorrent-org
https://zenodo.org/record/3746061
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2.3 Siamese

Siamese (Scalable and Incremental Code Clone Search via Multiple

Code Representations) [20] is a novel code clone search technique

that is accurate and scalable to hundreds of million lines of code.

The technique includes multiple code representations by transform-

ing code into various representations to capture different types

of code clones, query reduction that keeps only highly relevant

terms in the code query, and a customised ranking function that

allows selection of a preferred clone type to be ranked first. It offers

accurate clone search with high precision and recall for Type-1 to

Type-3 clones compared to other state-of-the-art code search and

code clone detection tools [20]. Siamese’s clone search architecture

leverages the inverted index to efficiently search for code clones.

It scales to a large code corpus by indexing 365M lines of code

in less than a day. Each query response time is within 8 seconds.

The technique is general and can be applied to several software

engineering problems such as retrieving similar code snippets from

a large-scale codebase, finding code clones between Stack Over-

flow and GitHub projects, and analysing software license violations.

Currently, Siamese supports code clone search in Java language

only. However, the technique can be extended to other languages

by adding additional language parsers.

3 MATCHA’S DESIGN

Matcha is a code recommendation system that accepts a Java

project as input and returns a list of code recommendations, i.e.,

snippets from Stack Overflow answers that are similar to the input

snippet with the latest updates.Matcha’s main component is the

Siamese code clone search engine [20]. ForMatcha, we will aug-

ment Siamese to include three additional modules: boiler-plate code

filter, multiple-code revision search, and latest code revision retrieval

(see Figure 1). The three modules are crucial for giving high-quality

code recommendations by Matcha. Although the input is given to

Matcha as a project,Matchawill read each Java file in the project,

parse them, and perform the code clone search at method-level

one at a time. During the clone search process of each given code

query, Matcha will perform the search using Siamese by applying

multiple code representation, query reduction, and clone ranking.

Within the search process, we will incorporate the three additional

modules to enable Matcha to return code recommendations as

follows. Siamese is currently written in the Java language. Similarly,

Matcha and its new modules will also be implemented in Java.

Boiler-plate Code Filter: Clones between Stack Overflow and

software projects can contain a large number of boiler-plate code [22]

(e.g., getters, setters, or equals methods) that are not useful for de-

velopers. Thus, the boiler-plate code filter removes boiler-plate code

from the search. The filter will be created as follows. First, we will

compile a list of code patterns that are considered as boiler-plate

code according to the classification in the previous study [22]. For

example, the getter, setter, equals(), compareTo(), toString()
methods will be considered as boiler-plate code. Second, we will

create a list of regular expressions that match with such boiler-plate

code patterns. These regular expressions will be integrated into the

search component of Siamese as a query filter. We will check the

given code query against the list of regular expressions. If there is a

match, we will skip that code snippet from performing the search,

thus removing the boiler-plate code from the search results.

Multiple Code Revision Search: This module allowsMatcha

to search for multiple revisions of the same code snippet in a Stack

Overflow answer. The multiple code revision search module will

be created as follows. First, we will create the clone search index

of Siamese by inputting all the revisions of each Stack Overflow

accepted answer in Java. We will name the code snippets in each re-

vision by concatenating the PostID (the unique ID of each answer),

the LocalID (the unique ID of each code block within the code) and

the HistoryID (the unique ID of each revision of the code block) as

defined by the SOTorrent dataset. For example, the Stack Overflow

answer ID 8394534 has 3 revisions
8
, they will be indexed as follows.

The code snippet in the original version will be saved into a file

and indexed using the file name 8394534_0_0.java. The first re-
vision version will be created and indexed as 8394534_0_1.java.
The second revision, the latest one, will be created and indexed

as 8394534_0_latest.java. Using this naming technique, we can

automatically identify from the Siamese clone search results if the

matched code snippet is the latest version or not by checking from

the name of the file name of the first-ranked result.

Latest Code Revision Retrieval: The latest code revision re-

trieval module allowsMatcha to return the latest revision of the

matched code snippet. Based on the result from the multiple code

revision search module,Matcha will check, for each code snippet

query, whether the latest version of Stack Overflow answer is re-

turned. If not,Matcha will include the latest version of the answer

into the list of code recommendations.

After finishing searching using all the methods in the given Java

project,Matcha will return the list of code recommendations in

a CSV format. Each record contains the file name, method name,

start line, and end line of the code in the project, and the PostID
of the Stack Overflow post that contains the latest code revision.

4 EXECUTION PLAN

Figure 1 displays the overview for our exploratory study. The study

will be separated in four sequential phases (Phase 0 is not displayed

in the diagram). This section describes each phase in detail.

4.1 Phase 0: Matcha’s Sanity Check

As depicted in Figure 1, and fully explained in Section 4.3, Siamese

and the boiler plate code filter compose the core technology underly-

ingMatcha’s ability to search for similar code between a software

project’s code and snippets in Stack Overflow answers. Hence, the

first step of our study must be an assessment of how well Matcha

performs in this task.

In its original study [20], Siamese’s clone search accuracy has

been evaluated using several error measures including mean aver-

age precision (MAP), mean reciprocal rank (MRR), precision-at-10

and recall on the OCD, SOCO, and BigCloneBench datasets [21, 29].

The evaluation results show that Siamese can search for clones with

high accuracy. In Siamese’s study, among other evaluations, the

approach was assessed with two experiments that consider Stack

Overflow and GitHub data. First, a replication study of FaCoY [12],

a code-to-code search tool, is performed. However, the replication

8
https://stackoverflow.com/posts/8394534/revisions

https://stackoverflow.com/posts/8394534/revisions
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Figure 1: Overview of our exploratory study.

study only included 10 Stack Overflow code snippets as code search

queries. Second, Siamese is used to analyse clones between the

72,365 Java code snippets in accepted answers on Stack Overflow

and 16,738 GitHub Java projects for potential software license vio-

lations. As one can see, the Siamese clone search has not yet being

directly evaluated regarding its accuracy in matching code from

software projects and Stack Overflow snippets. Moreover, in a dif-

ferent work [22], we found that the clones between Stack Overflow

and software projects may be different than normal clones, such

as having incomplete code snippets and a greater number of boiler

plate code. Hence, the additional boiler plate code filter is necessary

forMatcha’s design, as discussed in Section 3. Thus, it is important

to evaluate Siamese in combination with the boiler plate code filter

in a comprehensive dataset as a sanity check of Matcha’s core

underlying task.

For this sanity check, we will employ the established code clones

ground truth between GitHub projects and Stack Overflow posts

provided by the SOTorrent dataset [2]. The clone pairs are estab-

lished by locating source code files in a GitHub project with a URL

to a Stack Overflow post in a code comment. The PostReferenceGH
table contains both the URL to the Stack Overflow post and the URL

to the GitHub project’s file. With the latest version of SOTorrent,

there is a total of 6,683,852 clone pairs recorded in the table. By

filtering only Java language, there is a total of 69,885 clone pairs,

which we will use as our ground truth.

Next, we will extract the code snippets from both Stack Overflow

answers and GitHub projects that appear in the ground truth. The

code snippets in GitHub projects will be extracted at a method-level

granularity, while the code snippets in Stack Overflow answers will

be extracted at a file-level granularity (i.e., using the whole code

snippet) because some code snippets in Stack Overflow answers

are not complete methods. We will index all the Java answers in

SOTorrent, not only the answers in the ground truth, in Siamese.

This is to avoid the bias of searching only the true positives, which

may affect the precision and recall of the results.

Moreover, since existing work [21] shows that configurations can

strongly affect the performance of code clone detectors and code

similarity tools, and the original configurations are not always the

best one, we will also perform tuning of Siamese’s configurations as

follows. We will divide the clone pairs in the ground truth into two

sets: the tuning set and the testing set, with the ratio of 20% and

80% of all the clone pairs accordingly. Next, we will run Siamese

on the tuning set starting with the default configuration values of

the following parameters: (1) code normalization, (2) n-gram size,

(3) query reduction threshold. We will then perform an exhaustive

search of the three parameter values to achieve the best F1 score

following the method performed in our previous work [21]. We will

call the configurations with the highest F1 score as the optimised

configurations. Lastly, we will apply Siamese with the optimised

configurations to the testing set and compare the results with the

ground truth, create a confusion matrix, and measure the accuracy

of the approach using measures such as precision, recall, and F1-

score. The results will be reported in running Siamese with both

original and optimised configurations.

In addition, to evaluate the effectiveness of the additional boiler-

plate code filter module on improving the accuracy of clone search,

we will also evaluate Matcha using Siamese with the optimised

configurations on the testing set before and after integrating the

boiler-plate code filter and report the comparison of the clone search

accuracy (precision, recall, and F1-score) in both scenarios. Lastly,

we will manually validate a sample of the clone pairs that are

removed from the search results after integrating the boiler-plate

code filter to ensure the effectiveness of the filter on removing

actual boiler-plate code. Interesting findings will be reported and
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discussed. The evaluation performed in Phase 0 will serve as an

answer to the study’s RQ1: How accurate is Matcha’s detection of

similar code snippets between software projects and Stack Overflow

answers?.

4.2 Phase 1: Indexing Code Snippets from

Stack Overflow’s Answers on Siamese

Upon assessing Matcha’s performance in matching code from

software projects to snippets in Stack Overflow (Phase 0), we will

move on to Phases 1-3 of our exploratory study. In Phase 1, we will

prepare Matcha for the later phases. For this, we will consider the

latest version of the SOTorrent dataset, as described in Section 2.2.

First, we will extract the code snippets that have at least one

revision from all Java accepted answers. Next, we import the ex-

tracted snippets into the Siamese clone search index. Depending

on the number of code snippets to be indexed, this step may take a

while. In a previous work, the indexing of 4.8M snippets (365MLOC)

in Siamese took less than a day (18 hours 13 minutes). Our initial

analysis of Java posts on SOTorrent shows that there are 3,906,637

Java posts on Stack Overflow. Thus, we expect the indexing time of

all the Java accepted answers to take approximately one to two days.

This indexing phase occurs only once in the study and the later use

of Siamese will be done by querying similar code snippets which

takes a much faster time (e.g., seconds). Furthermore, by using the

incremental indexing of Siamese, the expansion of the study (e.g.,

add more languages) will be faster compared to the initial indexing.

4.3 Phase 2: Recommending Code Updates

from Stack Overflow Answer Edits

In Phase 2 of our exploratory study, we will: 1) select a set of

GitHub projects as an evaluation dataset, and 2) runMatcha for

each project and assess which recommendations are useful for

developers. We detail each step as follows.

As previously mentioned, one of our assumptions for this study

is that Stack Overflow answer edits may serve as a source for

optimised code snippets with the potential to improve the codebase

of software projects. In this context, it is expected that projects with

different levels of code quality may be benefited differently. For

instance, a project with a high-quality codebase may not have as

many sub-optimal snippets, whereMatchawould not find as many

useful recommendations. Differently, a project with a codebase

containing more sub-optimal snippets might be greatly impacted

byMatcha’s recommendations. To evaluate this assumption, we

will need a representative sample of software projects with different

levels of code quality.

To search for GitHub projects, we will employ GHS (GitHub

Search) [5], a recently published tool and dataset for searching

GitHub repositories that is tailored for Mining Software Reposi-

tories studies. The GHS dataset is composed of 735,669 reposito-

ries written in 10 programming languages. For each project, GHS

provides data regarding 25 characteristics, which can be used as

filters in the search. For this exploratory study, we will search GHS

with the following filters: Language: Java; Exclude Forks;
Has Open Issues; Has Open Pull Requests. We will only

select projects written in Java due to Siamese’s limitations (see

Section 2.3). We will exclude all forks to make sure there will be
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Figure 2: GitHub project selection criteria based on the dis-

tributions of number of stars, watchers, and forks.

no redundant projects in our dataset. We will select projects with

both open issues and open pull-requests to guarantee the projects

make use of GitHub’s social features to maximise the chances to

have Phase 3’s pull-requests properly evaluated.

For each project, GHS provides 3 popularity metrics: Number
of Stars, Number of Watchers and Number of Forks. GitHub
popularity metrics, such as the ones provided by GHS, have been

used countless times as quality proxies for GitHub projects [9, 26,

34]. Although isolated popularity metrics have been shown not to

be the most effective method to assess a project’s code quality [16],

we believe a combination of these metrics has the potential to yield

a more trustworthy proxy. Hence, for each quality metric provided

by GHS, we compute the distribution and divide it into quartiles.

The projects that appear above the third quartile for all metrics will

be considered as having a higher quality codebase. Similarly, the

projects appearing below the first quartile for all metrics will be

considered as having a lesser quality codebase. Finally, a project

that appears in between the first and third quartiles for all metrics

will be considered as having a medium quality codebase. Projects

that appear in the intersection of quartiles between metrics, e.g.,

above the third quartile for a metric and below the first quartile for

another metric, will be excluded from this study. These criteria will

provide a clear separation of projects with different levels of code

quality based on the popularity metrics proxy we will employ.

Figure 2 depicts our project selection criteria. Suppose the box-

plots represent the distribution of the number of stars, number of

watchers, and number of forks for all the projects that pass our GHS

filter. There are four projects represented by four symbols: Project

A (square), Project B (circle), Project C (triangle), and Project D

(pentagon). According to our project selection criteria, we will

include Project A since it appears below the first quartile for all

the metrics. Similarly, we will include Projects B and C since they

appear between the first and third quartiles and above the third

quartile for all the metrics accordingly. We will not include Project

D because it appears in a different quartile for at least two metrics.

After applying the selection criteria discussed above, we still ex-

pect to have a population of thousands of projects, which would be

infeasible to consider in our study due to the manual and qualitative
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methods in our evaluation. Hence, we will compute the distribu-

tion of software projects into the three code quality tiers and take

a random stratified representative sample in the 95% confidence

level. Due to projects’ constant evolution within GitHub, we will

select the projects at the time of executing this exploratory study.

This way, we will have the most up to date selection of projects

according to our predefined methodology.

After selecting the projects, we will runMatcha for each project.

Matcha’s execution works as follows. First, for a given software

project, Matcha will extract the code for all the projects’ meth-

ods and apply the boiler-plate code filter. Next, for each remaining

method,Matcha will search for similar code snippets on Siamese’s

index, which contains the code for Stack Overflow’s accepted an-

swers with all the versions, as shown in Phase 1. If Siamese returns

a snippet corresponding to an older version of a Stack Overflow

answer, i.e., not the latest version, Matcha will mark this method

for recommendation. Finally, for each marked method, Matcha

will return the latest version of the answer as a recommendation.

After runningMatcha for each selected project and collecting

all recommendations, we will enter the final step of Phase 2. For

each recommendation, we will look at the original Stack Over-

flow answer and perform a manual classification according to the

answer edit categorisation proposed in a related paper [3]. Each cat-

egory describes the type of edit being made in the Stack Overflow

answer, such as Optimising and Refactoring. Since Matcha’s

recommendation is based on the latest answer edit on Stack Over-

flow, the category of the answer edit will also be considered the

category of the recommendation provided byMatcha. Consider

the example provided in Section 1.1. By looking at the type of code

changes performed between Listings 2 and 1, one would categorise

the edit as Optimising, which would also be the category of the

recommendation proposed by Matcha. For a full reference of the

categorisation, we refer to the work by Baltes et al. [3].

The manual classification will be performed independently by

two researchers, where they will label each recommendation into

one or more categories. If the recommendation does not fit into any

of the categories previously defined, the researcher may propose

a new category. After finishing their independent classification,

the researchers will compare their labelling, and the inter-labeller

reliability will be measured with Cohen’s kappa coefficient. For

the recommendations with a disagreement in classification, a third

researcher will intervene to provide a final classification. After

the manual classification, there will be a list of categories into

which all recommendations will have been categorised. Finally,

all recommendations that perform a relevant code update, such

as Optimising and Refactoring, for example, will be considered

useful for developers. The list of all categories considered useful for

developers can only be known after the complete manual analysis is

finished. Hence, it is not possible, at the time of writing this paper, to

present the complete list of useful categories for recommendation.

The results obtained in Phase 2 of our exploratory study will an-

swer RQ2: To what extent are the recommendations given byMatcha

useful for developers?.

4.4 Phase 3: SubmittingMatcha’s

Recommendations as Pull-Requests

To assessMatcha’s potential to be adopted by software developers

in their projects, we need to evaluate how the recommendations

are received by developers. For this, we will consider the results of

RQ2 and collect the recommendations considered useful for devel-

opers. Next, we will need to select a subset of recommendations

to send the pull-requests. Considering the population of all useful

recommendations stratified by the projects’ level of code quality

and recommendations’ categories (see Section 4.3), we will extract

a random stratified relevant sample at the 95% confidence level.

For each recommendation in the sample, we will execute the

following safeguard procedure to submit a pull-request that min-

imises potential issues that may be caused by our lack of knowledge

regarding the project. First, we will check whether the project pro-

vides an automated test suite. If a test suite is not provided, the

recommendation will be discarded from this evaluation phase. Next,

after incorporating the changes according to the recommended snip-

pet, we will run the project’s entire test suite. If any test fails, the

recommendation will be discarded from this evaluation phase. For

the changes that pass all tests, we will submit a pull-request that

incorporates the recommended changes. The description for the

pull-request will be either adapted from the Stack Overflow edit

comment or created by ourselves if no edit comment was provided.

Next, we will track the status of each pull-request and avoid

interfering with the review process as much as possible. This is to

mitigate any bias that may be included in the reviewing process in

case we mention the exploratory study, the scientific methodology

behind the pull-request or any other details outside the code change

itself. The outcome of the pull-requests alongside the discussions

between developers during review will be used to answer RQ3: To

what extent are Matcha’s recommendations accepted in practice?.

5 THREATS TO THE VALIDITY

Internal validity: A potential threat to internal validity stems

from the adoption of Siamese to search for similar code snippets in

Stack Overflow accepted answers, which may contain false posi-

tives and false negatives. We will mitigate this threat in Phase 0 of

our study by performing a sanity check of the code clone search

accuracy of Siamese to evaluate if it is suitable for our approach.

In addition, GitHub’s popularity metrics (i.e. Number of Stars,
Number of Watchers and Number of Forks) may not accurately

represent a project’s code quality. Nevertheless, we argue that a

categorisation criteria that combines all three metrics and excludes

projects that intersect metrics can yield a more trustworthy proxy.

Lastly, the acceptance or rejection of pull-requests may not fully

representMatcha’s potential of acceptance by developers. We will

mitigate this threat by performing a qualitative analysis of the pull-

requests and the discussions between developers during review

to understand the actual reason for accepting or rejecting such

pull-requests.

External validity: The ground truth data in Phase 0 is based on

the code snippets in GitHub projects that have a comment pointing

to the original Stack Overflow post where the code is copied from.

The clones can potentially be biased to only clones that are copied

from Stack Overflow with attributions and may not be generalised
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to all the clones between Stack Overflow and GitHub. However, to

the best of our knowledge, it is the only ground truth that contains

a large amount of clone pairs (6,9885) with real evidence that the

code has been reused from Stack Overflow to GitHub. Moreover, by

relying on the code comments created by the authors of the code, we

avoid the threat of manually labelling the clones by ourselves. The

conclusions drawn from this study will be based on the selection of

GitHub projects according to our predefined methodology detailed

in Phase 2. It may not generalise to all GitHub projects. Moreover,

we will only analyse code written in Java in both GitHub and Stack

Overflow answers. Hence, the findings may not be applied to other

programming languages. Finally, in this study, we will focus on

accepted answers, where the findings may not be applicable to other

types of Stack Overflow answers (e.g., newest answers, highest-

voted answers).

6 CONCLUSION

This paper presents an exploratory study of recommending code

improvements for sub-optimal code snippets based on the latest

edit of Stack Overflow accepted answers. We propose an approach

called Matcha that can search for similar code snippets in several

revisions of Stack Overflow accepted answers and recommends

code changes to improve the quality of a software project’s code

snippets. We plan to evaluate our approach by performing manual

validation on the usefulness of the code recommendations provided

by Matcha and by submitting pull-requests containing the useful

recommendations to the GitHub projects. This paper also presents

the methodology for selecting GitHub projects that we intend to use

in our planned study. We expect the results from the exploratory

study will shed light on the potential of leveraging Stack Overflow

answers for code recommendation.
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