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Abstract—Code review has been widely acknowledged as a
key quality assurance process in both open-source and industrial
software development. Due to the asynchronicity of the code
review process, the system’s codebase tends to incorporate
external commits while a source code change is reviewed, which
cause the need for rebasing operations. External commits have
the potential to modify files currently under review, which
causes re-work for developers and fatigue for reviewers. Since
source code changes observed during code review may be due to
external commits, rebasing operations may pose a severe threat to
empirical studies that employ code review data. Yet, to the best of
our knowledge, there is no empirical study that characterises and
investigates rebasing in real-world software systems. Hence, this
paper reports an empirical investigation aimed at understanding
the frequency in which rebasing operations occur and their side-
effects in the reviewing process. To achieve so, we perform an
in-depth large-scale empirical investigation of the code review
data of 11 software systems, 28,808 code reviews and 99,121
revisions. Our observations indicate that developers need to
perform rebasing operations in an average of 75.35% of code
reviews. In addition, our data suggests that an average of
34.21% of rebasing operations tend to tamper with the reviewing
process. Finally, we propose a methodology to handle rebasing
in empirical studies that employ code review data. We show how
an empirical study that does not account for rebasing operations
may report skewed, biased and inaccurate observations.

Index Terms—Rebasing, Code Review, Empirical Software
Engineering

I. INTRODUCTION

In software development, code review is a process in
which source code changes proposed by developers are peer-
reviewed by other developers before being incorporated into
the system [1]. The code review process has been empir-
ically observed to successfully assist developers in finding
defects [2], [3], transferring knowledge [1], [4] and improving
the overall quality of a software system. Given its benefits,
code review has been widely adopted by both industrial and
open-source software development communities. For example,
large organisations such as Google, Microsoft and Facebook
use code review systems on a daily basis [5], [6], [7], [8].

Nevertheless, code review is costly. Developers need to
constantly context switch between implementation and review-
ing tasks, which has been observed to be one of the major
challenges in peer code review [9]. Moreover, depending on
the process followed by each organisation and its underlying
structure, senior developers may spend more time reviewing

code than writing it [10], [11]. In addition, developers may
experience confusion throughout various stages of the code
review process, which have the potential to incur delays,
incorrect solutions and increased development effort [12], [13].
In this context, researchers have been proposing tools and
methods to improve the code review process and optimise
developers’ time during review. Examples include review au-
tomation [14], reviewer recommendation [15], [16], integration
of static analysers [17], [18] and testing tools [19].

Moreover, we observe a myriad of empirical studies that
attempt to measure and analyse the effect of code review
on many aspects of software quality, such as defects [20],
coding conventions [21], design [22], build analysis [23], etc.
In addition, researchers have leveraged code review data to
empirically study other aspects of software engineering, such
as architectural changes [24], [25].

Modern code review is asynchronous [1], where developers
can submit their code changes for review and immediately
start working on a different task while the review is carried
out. Similarly, reviewers may receive a review notification and
choose to accommodate it in the best time during their daily
routine. However, this asynchronicity has side-effects.

In the scenario where the system’s codebase changes in
the repository during the course of a review, developers
need to update their local copy to carry on with the review.
Modern code review systems, such as Gerrit, opt to perform
a rebasing operation instead of merging when updating a
change locally [26]. This is due to the benefits commonly
presented by rebasing, such as cleaner version history and
simplified branches [27]. However, when applied during code
review, rebasing may present side-effects (see Section III).
Depending on how the codebase changes during review, a
rebasing operation may invalidate the code developers and
reviewers have been working on, which might cause re-work,
reviewing fatigue [28], and confusion [12], [13] for developers.

Rebasing operations may alter the system’s codebase during
code review. Hence, the source code changes observed during
the review may not be due to the review itself but rather to
external changes. As a researcher, this may represent a severe
threat to the validity of an empirical study. Previous investi-
gations have mentioned the problems presented by rebasing
in empirical studies [29], [30], [31], yet no in-depth analyses
have been performed. In spite of the potential issues rebasing
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Fig. 1. The modern code review process.

may cause for both software engineering practitioners and
researchers, to the best of our knowledge, there is no study to
date that is dedicated to characterise and investigate rebasing
and its side-effects in the reviewing process.

Thus, we list the main contributions of this paper as follows:

1) The first in-depth empirical study on the effects of re-

basing in the code review process of real-world systems.

2) The identification that rebasing is performed in an aver-

age of 75.35% of code reviews, where a median of 13
files and 385 lines of code are modified due to rebasing.

3) The observation that an average of 34.21% of rebasing

operations tend to cause re-work for developers and
severely affect empirical studies that employ code review
data.

4) A methodology to handle rebasing operations in empir-

ical studies that employ code review data.

The rest of this paper is organised as follows. Section II
presents the background for the code review process while
Section III discusses the side-effects caused by rebasing op-
erations. Section IV presents our 4 research questions and the
methodology we employ to answer each of them. Section V
details the results for our research questions and Section VI
discusses the implications of our observations for both soft-
ware engineering practitioners and researchers. Section VII
presents and evaluates a methodology to handle rebasing
in empirical studies that employ code review data. Finally,
Sections VIII, IX and X discusses threats to the validity,
related work and conclusions, respectively.

II. CODE REVIEW BACKGROUND AND TERMINOLOGY

The modern code review process is asynchronous and com-
monly built on top of a decentralised version control system,
such as git [1]. Moreover, a dedicated tool is employed to assist
developers when visualising a review, providing feedback and
committing the changes. The standard modern code review
process is represented in Figure 1.

A developer starts a review by modifying the original
codebase in the repository and submitting a new revision in
the form of a commit. Other developers of the system will
serve as reviewers by inspecting the submitted source code
and providing feedback in the form of comments. Next, the
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Fig. 2. Lifecycle of code review 17890 from egit.

review’s author will modify the current revision according to
the received feedback and submit the improved code as a
new revision. This procedure is repeated until the last revision
is either merged or abandoned, where the first indicates the
code change was incorporated into the system and the latter
indicates the code change was rejected.

In this paper, we use code review to indicate a set of sequen-
tial source code submissions that were manually inspected by
developers and later merged or abandoned. In this context,
a revision represents the source code submission at each
different iteration of the review process. Finally, the developers
involved in writing the code for review are considered to be the
review’s authors, and the developers responsible for inspecting
the code are considered to be the reviewers.

III. THE SIDE-EFFECTS OF REBASING IN CODE REVIEW

To demonstrate the scenario in which a rebasing operation is
needed alongside its side-effects in the reviewing process for
both practitioners and researchers, we make use of a real code
review (number 17890') from the egit software system (see
Section IV-A). Egit employs Gerrit as its code review tool,
and the lifecycle for review 17890 is depicted in Figure 2.

The figure depicts egit’s master branch and the developer’s
local copy, which is indicated by the ‘review’ timeline. As one
can see in Figure 2, at the time the review started, the system’s
codebase in the master branch was represented by commit
79432. Hence, this is the commit whose review’s first revision
was based upon, i.e., the first revision’s parent. Right after
the first revision (commit d3b8b) was submitted, a reviewer
quickly observed that the proposed source code change was
prone to a NullPointerException. Next, the review’s author
checked whether the codebase had changed in the master
branch. Since this was not the case, the developer simply fixed
the issue in the local copy and submitted the second revision,
as represented by commit 9¢046. In Gerrit, new revisions are
always created by amending the previous revision [26]. Thus,
although revision 9¢046 is a follow up of revision d3b8b, they
are not connected in the version control system. In regards to
the system’s version control repository, both first and second
revisions share the same parent commit, i.e., 79432.

According to Figure 2, the system’s master branch remained
the same while the first and second revisions occurred. Hence,
the review’s author did not have to update the local codebase
to apply the changes suggested by the reviewers. In this case,

Thttps://git.eclipse.org/t/#/c/17890/



a rebasing operation was not necessary, and any difference in
the source code between the first and second revisions are due
to changes performed by the review’s author.

Differently, between the second and third revisions, 5 com-
mits were integrated into the master branch, each of which
contains the results of other code reviews that were running
in parallel to review 17890 in egit. These commits are not
related to the code review at hand, yet they influence review
17890 because they modified the master’s branch during the
reviewing process. These are considered external commits to
code review 17890. In this case, the review’s author needed
to rebase the master branch into the local copy to obtain the
up to date version of the code from which the third revision
could be based upon, as enforced by Gerrit’s workflow. Hence,
despite being sequentially related in the code review, the
second and third revisions were based on different versions
of the codebase and do not share the same parent commit.

For this particular code review, in the first two revisions,
the author made modifications to parts of a large class named
CheckoutDialog. However, in between the second and third
revisions, the 5 external commits that have been integrated
into the codebase moved large pieces of code from Checkout-
Dialog to the BranchSelectionAndEditDialog class. Hence,
when the rebasing was performed, all the work performed in
the first and second revision was invalidated and lost.

This rebasing operation caused re-work for all developers
involved in the review. First, the review’s author had to locate
the pieces of code in the new class to adapt the original source
code changes to the external changes in the codebase that were
incorporated by the external commits. Similarly, the reviewers
had to review virtually the same code change as in the second
revision, but now into a different context.

As a researcher, rebasing may pose a serious threat to
empirical studies that employ code review data. In the case of
naively studying code review 17890 as a simple sequence of
its revisions (d3b8b, 9c046 and 4fcOe), one would observe
source code changes that are not only due to the revisions
themselves, but actually results of the 5 external commits
integrated into the codebase during the reviewing process.

IV. EXPERIMENTAL METHODOLOGY

Our goal is to study rebasing and its side-effects in the code
review process. Thus, we ask the following research questions:
RQ1: How often do developers need to perform rebasing dur-
ing code review? (Sanity check) As discussed in Section III,
rebasing may occur during the code review process. This
research question studies code review data from real-world
software systems to investigate how often rebasing occurs in
practice. We first need to establish the frequency in which
rebasing occurs to justify the need for this empirical study.
RQ2: For how long is the codebase exposed during the
reviewing process? (Codebase exposure) The results obtained
in this research question indicate the time frame in which the
codebase is exposed to external commits, i.e., code changes
that will cause the need for rebasing.

RQ3: How does the codebase change between rebasing?

(Codebase change) For the code reviews in which developers
performed a rebasing operation, we measure the codebase
change between the beginning of the code review to the time
the rebasing was performed. This indicates the changes in the
source code that are not due to the code review itself, but
actually to external commits.

RQ4: How often does rebasing tamper with the code review
process? (Side-effects of rebasing) A certain code review
is tampered by rebasing operations when the code changes
performed in the external commits invalidate the code changes
currently at review, as presented in Section III. The observa-
tions drawn from this research question will shed light on the
side-effects caused by rebasing for both software engineering
practitioners and researchers.

Next, we present the dataset used in this study followed by
the experimental methodology employed to answer each of the
research questions above. In addition, we provide a complete
replication package [32] for our study, including the raw data
for all steps of our experimental methodology and analyses.

A. Code Review Data in CROP

In this paper, we make use of CROP, a curated open-source
dataset of code review data. We have developed CROP to
support our previous work in architectural changes during code
review [24], [25], and it comprises code review data from 11
software systems developed by two well-known open-source
communities: Eclipse [33] and Couchbase [34]. At the time
we developed CROP, we selected the software systems with
most code review data from each of these two communities.
Given a certain software system, CROP provides its complete
reviewing history. For each code review, we have access to
the review’s data and metadata, such as the description and
comments from developers alongside information about the re-
view’s author and timestamps, for example. In addition, CROP
provides a complete copy of the entire codebase for each
revision and its respective parent, which represent the system’s
codebase at the time of review. For the interested reader, we
refer to CROP’s original paper [35] and website [36].

For this empirical study, we employ the code review data
of all systems contained in CROP. By including in our study
all available systems from a dataset that was not originally
designed for this paper, we avoid ‘cherry-picking’ and selec-
tion biases in our experiment. Despite considering all software
systems in CROP, not all code reviews from each system
suit our study. For instance, abandoned reviews represent
changes that were not integrated into the system. Therefore,
these reviews do not present any influence on the system’s
codebase regardless of rebasing. In addition, code reviews that
are composed of a single revision are not affected by rebasing.
Hence, the inclusion criteria for this empirical study consisted
of merged code reviews composed of at least two revisions.

Table I presents details about each system and the set of
code reviews we consider in this study. In total, we study 11
software systems, 28,808 code reviews and 99,121 revisions.
The reviewing time span for the systems under analysis range
from 3 to 8 years. Finally, we study systems that provide a



TABLE I
SOFTWARE SYSTEMS CONSIDERED IN THIS PAPER. WE PRESENT THE SYSTEMS’ IDS USED IN THIS STUDY, DESCRIPTION, CORE PROGRAMMING
LANGUAGE, TIME SPAN OF REVIEWING HISTORY, NUMBER OF REVIEWS AND REVISIONS CONSIDERED, AND AVERAGE NUMBER OF COMMITS PER DAY.

Systems ‘ ID ‘ Description Prfgramming Time Span ‘ Numl?er of ‘ Num'b er of ‘ Commits

anguage Reviews Revisions per Day
linuxtools S1 | C/C++ IDE for linux developers Java 06/12 to 11/17 3,438 10,635 2.85
platform.ui S2 | Building blocks for user interfaces in Eclipse Java 02/13 to 11/17 2,985 11,188 447
egit S3 | Integration of jgit into the Eclipse IDE Java 09/09 to 11/17 2,899 9,827 1.70
jgit S4 | Java implementation of Git Java 10/09 to 11/17 2,533 9,961 1.97
testrunner S5 | Tool used to run Couchbase’s tests Python 11/10 to 11/17 7,050 20,138 3.98
ns_server S6 | Couchbase’s server supervisor JavaScript 05/10 to 11/17 6,218 25,246 4.18
ep-engine S7 | Couchbase’s eventual persistency implementation | C++ 02/11 to 11/17 3,990 18,415 2.44
indexing S8 | Couchbase’s indexes implementation Go 03/14 to 11/17 1,964 6,695 1.75
java-client S9 | Couchbase’s driver implementation in Java Java 11/11 to 11/17 766 2,362 0.37
jvm-core S10 | Low-level API mostly used by java-client Java 04/14 to 11/17 698 2,097 0.47
spymemcached | S11 | Implementation of a memory caching system Java 05/10 to 07/17 257 972 0.25

varied set of functionalities alongside implementations in up
to 5 different programming languages.

B. Identifying Rebasing Operations

In RQI, we investigate the occurrence of rebasing during
code review. To do so, we rely on the revisions’ commit ids
and their respective parents to identify the rebasing operations.
Consider the example provided in Figure 2. The first revision
is represented by commit d3b8b, whose parent is commit
79432. The master branch has not incorporated any external
commit between the first and second revisions. Hence, the
second revision (9c046) presents the same parent as the first
revision. In this case, since the parent commit for both revi-
sions is the same, a rebase operation has not been performed.

Between the second and third revisions, 5 external commits
have been integrated into the master branch. As a result of the
codebase change, the third revision, commit 4fcOe, presents a
parent commit (b4a96) that is different from the two previous
revisions. The change in the parent commit between revisions
indicates that a rebasing operation has occurred. By following
this procedure for all code reviews in CROP, we can identify
all instances of rebasing operations in our dataset.

C. Measuring Codebase Exposure During Code Review

In RQ2, we investigate codebase exposure during the re-
viewing process. To achieve this, we observe how long it
commonly takes from the beginning of a code review to its
latest rebasing operation. For this study, we employ number
of days as a proxy to measure the time of codebase exposure
during code review. Codebase exposure can be computed for
each revision within a code review. Since we aim at computing
the complete time frame in which the codebase is exposed
during code review, we chose to consider the latest revision
to compute codebase exposure.

Consider the example presented in Figure 2. To measure
the codebase exposure during this review, we first identify the
parent commit of its first revision, i.e., 79432. Through git log,
we notice that this commit was integrated into the codebase
on the 30/03. Next, we identify the parent commit of the
revision in which the latest rebasing operation has occurred. In
this case, developers only performed a rebasing operation on
the third revision, whose parent commit is b4a96. Since this

commit was also integrated into the codebase on the 30/03,
we observe that the codebase was exposed for 1 day.

D. Measuring Codebase Change During Code Review

In RQ3, we investigate how the codebase evolves during the
course of a code review. The codebase change represents the
source code that was integrated into the codebase as a result
of all external commits that occurred during the reviewing
process. To achieve this, we employ a mix of repository
activity and churn metrics.

First, we identify the parent commit of the first revision
and latest rebasing operation. For the example in Figure 2, we
identify 79432 and b4a96, respectively. Next, we measure the
repository activity between these two commits by observing
the number of commits integrated into the master branch
between them, which in this case, equals 5. In addition, we
measure the source code churn through the following metrics:
number of files changed, number of hunks, and number of lines
changed. Note that all these churn metrics have been reported
by developers as highly influential in a review’s response time
and reviewer fatigue [9]. For this particular review, we observe
that the 5 external commits changed 17 files in the codebase by
performing 46 hunks and changing a total of 818 lines. These
metrics indicate not only the number of commits that caused
the rebasing but also the amount of change in the codebase
that is not due to the code review itself.

E. Identifying Code Review Tampering due to Rebasing

Every rebasing operation has the potential to tamper with
a code review. As presented in Section III, external commits
may invalidate the changes proposed by a review. Hence, in
RQ4, we investigate how often external commits tamper with
a code review when rebasing is performed.

To properly measure code review tampering, one would
need to employ robust dynamic and static program analysis
techniques. However, such techniques would incur drawbacks
in this study. First, we cannot guarantee that all commits of all
systems are compilable and have a test suite from which we
can perform dynamic analysis. Thus, any compilation and/or
testing issue that we observe during code review cannot be
directly linked to either the external commits or the code



review. In addition, we consider 11 software systems imple-
mented in 5 different programming languages in this study. As
a result, we could not find equivalent static analysers for all
languages which would yield comparable results. Choosing
a specific language and/or a set of systems to carry on this
investigation would result in considerable threats to the study’s
generalisation and overall validity.

Thus, we employ version control analysis to identify code
review tampering. We consider code review tampering to occur
when external commits modify files that are currently involved
in a code review, as described as follows. For each code
review, we record the files involved in each of its revisions,
as indicated by the CROP dataset. In the example presented
in Section III, we observe that, during the course of its
three revisions, CheckoutDialog.java and BranchSelectio-
nAndEditDialog.java were the files modified by the review’s
author. Next, we employ git diff to identify the list of files
modified in the codebase between the review’s first revision
and latest rebasing operation, i.e., commits 79432 and b4a96
in our example. In the case we observe at least one file being
modified by both sets of revisions and external commits, we
consider the respective code review to be tampered with. In our
example, commit e5fab, which was integrated into the code
between the review’s second and third revisions, moved code
from CheckoutDialog.java to BranchSelectionAndEditDi-
alog.java. Therefore, we consider this review to be tampered
by the rebasing operation.

Hence, by following this language agnostic and scalable
procedure, we can investigate code review tampering for all
systems in our dataset. Although we are aware that code review
tampering may occur through means other than modifying the
same file, this procedure provides a safe under-approximation
of code review tampering.

V. EXPERIMENTAL RESULTS

A. RQI: How often do developers need to perform rebasing
during code review?

For this research question, we consider all reviews com-
posed of more than one revision, as presented in Table I. For
each system, we computed the number of reviews in which
we identified at least one rebasing operation, following the
procedure described in Section IV-B. The first two columns of
Table II present (i) the number of reviews with a rebasing oper-
ation and (ii) the percentage of rebasing occurrence regarding
all reviews considered in the study. Considering linuxtools, for
example, we identified 2,376 code reviews in which a rebasing
operation was performed, which accounts for 69.11% of all
reviews composed of more than one revision in linuxtools.

When considering all systems, the average percentage of
rebasing occurrence is 75.35%. This indicates that, on average,
a rebasing operation is likely to occur in 3 out of 4 code
reviews. For platform.ui and indexing, developers performed
rebasing in 93.74% and 91.85% of reviews, respectively.

In addition, we computed the rebasing ratio for each review
in each system. This metric indicates how often developers
need to perform rebasing in a single code review. Consider

TABLE I
REBASING DURING CODE REVIEW. FOR EACH SYSTEM, WE REPORT THE
NUMBER OF REVIEWS WITH REBASING OPERATIONS, THE PERCENTAGE OF
REBASING OCCURRENCE, AND THE AVERAGE REBASING RATIO.

Svstems Reviews With Rebasing Average
¥ Rebasing Occurrence Rebasing Ratio
linuxtools 2,376 69.11% 79.09%
platform.ui 2,798 93.74% 81.87%
egit 2,464 84.99% 79.04%
jegit 1,941 76.63% 79.43%
testrunner 4918 69.76% 77.29%
ns_server 5,397 86.80% 89.61%
ep-engine 2,976 74.56% 70.52%
indexing 1,804 91.85% 86.88%
java-client 412 53.79% 68.09%
jvm-core 397 56.88% 72.33%
spymemcached 182 70.82% 70.43%
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Fig. 3. Distribution of rebasing ratio for each system under study. The
rebasing ratio indicates the percentage of revisions within a code review where
developers performed a rebasing operation.

the example depicted in Figure 2, which is composed of 3
revisions. Every revision after the first one is prone to a
rebasing operation due to changes in the codebase, which, in
this case, accounts for 2 revisions. For this particular review,
we only identified 1 rebasing operation. Hence, the rebasing
ratio of this code review is 1 x 100% = 50%.

According to our analysis, the overall rebasing ratio for all
systems is 77.72%. This indicates that, on average, developers
need to perform rebasing in about 75% of all revisions they
work on. Figure 3 depicts boxplots with the complete distri-
bution of the rebasing ratio for each system, as represented by
their respective id (see Table I).

As one can see from Figure 3, the boxplots are highly
skewed towards upper values of rebasing ratio. For instance, 8
out of the 11 systems under study present a median rebasing
ratio of 100%. This indicates that, in most systems, in more
than half of the code reviews, developers had to perform a
rebasing operation for every single revision as the review
progressed. When considering the distribution for ns_server,
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Fig. 4. Codebase exposure during code review. The boxplots indicate the
number of days the codebase remained exposed during code review.

for example, all code reviews with a rebasing ratio lower than
75% are considered outliers in the distribution.

As an answer to RQ1, our analysis indicate that developers
need to perform rebasing in an average of 75% of all code
reviews. Moreover, developers need to perform a rebasing
operation in about 75% of all revisions within a single code
review. Hence, we observe that developers commonly perform
rebasing as part of their code review process.

B. RQ2: For how long is the codebase exposed during the
reviewing process?

According to a recent empirical study [15], code reviews
commonly take from 2 to 5 days for completion. During this
period, the system’s codebase is exposed to changes other
than the ones being reviewed, which might eventually cause
developers to perform a rebasing operation. This research
question aims at investigating the exposure time of the sys-
tems’ codebase during the course of a code review. To do so,
we measure the exposure time in number of days, as described
in Section IV-C and displayed in Figure 4. Each system is
represented by their respective id, as described in Table I.
Notice that the boxplots are zoomed to display a maximum of
50 days of exposure for better visualisation. Nevertheless, our
replication package [32] provides the complete set of results.

Consider linuxtool (S1), for example. A median value of 5
days of exposure indicates that the codebase has been exposed
for more than 5 days during the course of more than half
of its code reviews. For all systems under study, the median
value of codebase exposure lies between 3 and 20 days. The
systems with highest median values of codebase exposure are
spymemcached and jgit with 20 and 11 days, respectively.
The systems with smallest median values of codebase exposure
are textrunner and indexing with 3 and 4 days, respectively.

Although not displayed in Figure 4, we observed a heavy-
tailed distribution of codebase exposure for all systems. For

instance, reviews number 1614 and 103921 from jgit, present
codebase exposure of 1,574 and 1,506 days, respectively.
Besides separately analysing each system, we additionally
combined the codebase exposure computed for all reviews of
all systems into a single distribution. Hence, as an answer
to RQ2, when considering all reviews in our dataset, the
median value of codebase exposure is 6 days. Since all of the
systems under study present an average of 2.22 commits per
day (see Table I), one can see that the systems’ codebases are
significantly exposed to external commits during code review.

C. RQ3: How does the codebase change between rebasing?

To investigate codebase change during the reviewing pro-
cess, we measure the number of commits, number of files
changed, number of hunks and number of lines changed for
each review and each system, as described in Section IV-D.
Figures 5(a) and 5(b) display the codebase change during code
review in regards to number of commits and files changed,
respectively. Similarly to RQ2, all boxplots are zoomed for
better visualisation. Due to space constraints, we omit the
boxplots regarding number of hunks and lines changed from
the paper. Nevertheless, for the full results, the interested
reader can access our replication package [32].

The median number of commits between rebasing varies
from 2 to 11 for the software systems under study. Nev-
ertheless, we have commonly observed cases in which the
codebase has integrated more than 20 external commits during
the course of a code review. When considering all reviews
from all systems, the median number of external commits
integrated into the codebase during code review is 5.

As one can see from Figure 5(b), the number of files
changed in the codebase during review is commonly higher
than 10. When considering linuxtools (S1) and platform.ui
(S2), the median number of files changed is 22 and 36,
respectively. In some cases, the distribution of files changed
outside review reaches from 100 to 150 files. For all reviews
and all systems, 13 files represent the median number of files
changed by external commits during a code review.

For number of hunks and number of lines changed, we
continue to observe linuxtools and platform.ui being the
systems with the largest codebase change during review. When
considering all reviews in our dataset, the median number of
hunks and lines changed in the codebase during the reviewing
process is 32 and 385, respectively.

As an answer to RQ3, the codebase of the systems under
study integrate a median of 5 external commits, which cause a
median change of 13 files during the course of a code review.
Each of these external commits and changes will cause the
need for a rebasing operation with the potential to tamper
with the reviewing process.

D. RQ4: How often does rebasing tamper with the code review
process?

Code review tampering occurs when external commits in-
corporated into the codebase during the course of a review
invalidate the changes proposed in the code review. In this
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Fig. 5. Codebase change during code review. Figure (a) indicates the number of external commits integrated into the codebase during the course of a review.
Figure (b) indicates the number of files changed as a result of the external commits.

TABLE III
CODE REVIEW TAMPERING. FOR EACH SYSTEM, WE REPORT THE NUMBER
OF REVIEWS TAMPERED BY REBASING, THE PERCENTAGE OF TAMPERING
OCCURRENCE, AND THE AVERAGE TAMPERING RATIO.

Systems Reviews Tampered Tampering Average

by Rebasing Occurrence | Tampering Ratio
linuxtools 533 22.43% 43.86%
platform.ui 593 21.19% 60.62%
egit 1,060 43.01% 57.75%
jeit 845 43.53% 58.41%
testrunner 1,083 22.02% 70.14%
ns_server 1,525 28.25% 67.25%
ep-engine 1,617 54.35% 64.84%
indexing 539 29.87% 63.13%
java-client 93 22.57% 47.96%
jvm-core 62 15.61% 44.00%
spymemcached 93 51.09% 57.25%

paper, we identify code review tampering by observing when
external commits modify the same files involved in the code
review, as described in Section IV-E. The first two columns
of Table III present (i) the number of reviews tampered by
rebasing and (ii) the percentage of review tampering regarding
all reviews in each system. Consider testrunner, for example,
we identified 1,083 code reviews tampered by rebasing, which
accounts for 22.02% of all reviews in which a rebasing
operation has occurred.

The systems which we observed the most and least amount
of code review tampering are ep-engine and jvm-core, with
54.35% and 15.61% of reviews being tampered due to rebas-
ing, respectively. When considering all systems, the average
tampering occurrence is 34.21%. This indicates that 35.21%
of all code reviews in our dataset were affected by external
commits being incorporated into the codebase during review.

In addition, we computed the tampering ratio for each
review. This metric computed the percentage of files involved
in a certain review that were modified by external commits.
Consider the example in Figure 2. All revisions within code
review 17890 modified two files: CheckoutDialog.java and

CheckoutDialog.java. We observed that the code changes
caused by the 5 external commits incorporated during the
review modified both files involved in the review. Hence, the
tampering ratio for this code review is 2 x 100% = 100%. The
third column of Table III depicts the average tampering ratio
for each system considered in this study. In platform.ui, for
instance, when considering the reviews in which tampering
occurred, an average of 60.62% of the files involved in the
review were modified by external commits.

As one can see from Table III, the values for tampering ratio
tend to be high. On average, when considering all systems,
57.74% of the files involved in tampered reviews were affected
by external changes. This indicates that, when a review is
tampered by rebasing, about half of the files involved in the
review tend to be altered by commits outside the reviewing
process. We observed considerably high levels of tampering
ratio for a few systems in our dataset, such as ns_server and
testrunner, which presented an average tampering ratio of
67.25% and 70.14%, respectively.

Furthermore, we present the distribution of tampering ra-
tio for each system in Figure 6. Overall, the boxplots are
skewed towards upper values of tampering ratio, indicating
that most files involved in a review tend to be modified by
external changes when tampering occurs. Moreover, for some
systems, such as testrunner and ns_server, more than half
of tampered reviews have more than half of its files modified
by external changes.

As an answer to RQ4, 34.21% of rebasing operations tend
to tamper with the reviewing process. Moreover, according
to our analyses, rebasing operations that tamper with a code
review tend to do so by modifying an average of 60.62% of
files involved in the review. One should notice that each of
these instances of code review tampering have the potential to
cause re-work and generally disrupt the reviewing process, as
described in Section III.
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VI. DISCUSSION
A. Contributions for Software Engineering Practitioners

Software developers who submit code for review and serve
as a reviewer of source code changes from their peers on a
daily basis need to understand the side-effects that rebasing
may have on their workflow. As an author of a code review
who will need to perform rebasing in between revisions, one
must be aware that external changes might invalidate the
existing code written for review. In this scenario, one should
first understand the differences in the codebase to identify any
possible conflict with the existing code under review. To avoid
re-work and possible defects in the case of code tampering by
rebasing, the review’s author should plan the changes that will
be necessary to adapt the revision to the new codebase.

When reviewing a revision which performed a rebasing
operation, reviewers may waste time by looking at changes
that actually came from external commits and not from the
code review itself, which may cause reviewing fatigue [28] and
lead to an overall poor (and sometimes unnecessary) reviewing
process. In this case, reviewers need to be able to differentiate
between the code being submitted for review and the code that
is a result of external commits.

Tools and automation are a key factor to assist in the tasks
listed above. Code review systems, such as Gerrit, should be
able to automatically identify code review tampering to better
advise developers when rebasing is necessary. In addition,
visualisation techniques can be employed to assist reviewers
in differentiating new code from rebased code during review.

A recent empirical study has provided a comprehensive
framework of confusion during code review [13]. The authors
observed complex changes, lack of context, change impact
and version control issues as causes for the confusion. We
have noticed many of the causes for confusion mentioned in
the related paper may be due to rebasing operations being
performed during review. Nevertheless, a follow-up study is

necessary to fully identify to what extent rebasing operations
are linked to developers confusion in code review.

B. Contributions for Software Engineering Researchers

Code review data has been employed in a plethora of
empirical studies that not only evaluate the code review
process itself [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [20], [21], [22], [23] but
also use code review data to study other software engineering
practices [24], [25]. In this context, our analyses indicate
that the understanding of rebasing and its effects in the
code review process is paramount for good quality empirical
studies involving code review data. Next, we list the main
take away points for researchers when performing empirical
studies that employ code review data.

1) Researchers cannot ignore code reviews in which rebasing
operations have been performed.

To avoid the issues and difficulties caused by rebasing in
empirical studies that involve code review data, one could
filter out all reviews and revisions with rebasing. However, our
investigation suggests that rebasing operations are performed
in an average of 75.35% of all code reviews. Moreover,
rebasing tend to be performed for an average of 77.72% of all
revisions within a code review. Hence, to filter out reviews and
revisions with rebasing, one would incur serious threats to the
study’s validity since most of the dataset would not be studied.

2) External commits happen often, and their side-effects in
the codebase may bias a study’s methodology and observa-
tions.

Our analyses suggest that a median of 5 external commits
are incorporated into a software system’s codebase during
the course of a review. These commits modify a median of
13 files and change a median of 385 lines of code. Hence,
if rebasing operations are not identified and handled in an
empirical study, researchers may incur noise in their code
review datasets. As a result, observations drawn from studies
that employ code review data, yet do not consider rebasing,
are prone to biases and inaccuracies.

3) External commits tend to modify and tamper with files
involved in a code review.

Our observations suggest that an average of 34.21% of code
reviews are tampered by rebasing, i.e., external commits incor-
porated during the reviewing process modified files involved
in a code review. This indicates that external commits not only
affect the codebase as a whole but also the files involved in
the code review itself.

Based on the points and analyses presented above, we ad-
vocate that all empirical studies that involve code review data
must handle rebasing operations as part of their methodology’s
design. This will ensure that we, as a community, will be able
to perform better empirical studies with the ability to achieve
scientifically sound and unbiased observations.
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VII. HANDLING REBASING IN CODE REVIEW DATA

In this section, we propose a methodology to handle rebas-
ing operations in empirical studies that employ code review
data. Next, we compare our methodology to a naive one, where
rebasing operations are not properly handled. The results aim
at showcasing the threats and biases researchers may incur to
their empirical studies if rebasing is not considered.

Thus, Figure 7 presents our proposed methodology to handle
rebasing in empirical studies that employ code review data.
The numbers in the figure indicate the order of steps necessary
to replicate the approach. Consider an empirical study in which
one needs to measure the difference between two revisions (n
and m) according to a certain property of interest, such as
code readability, testing coverage, code smells, architectural
quality, build time, energy consumption, etc.

The first step consists in separately computing the property
of interest for each revision and its respective parent. Due to
external commits that may have altered the system’s codebase
between revisions n and m, one cannot compare their code
directly, otherwise, external changes will be observed in the
revisions’ codebases. Hence, in the second step, one must
compute the difference in the property of interest between each
revision and its parent to extract the correct observations for
a revision. In the third step, one can compute the difference
in observations between n and m, which represent the change
in the codebase between revisions according to the property
of interest employed in the empirical study.

To demonstrate the usage of the proposed methodology, we
devised a simple empirical study regarding software refactor-
ing. Given a certain code review, our goal is to measure the
number of refactoring operations performed during the course
of the review. In this context, we use RefMiner [37], a tool
that identifies refactoring operations between two commits
of a software system implemented in Java. Hence, we use
RefMiner to identify the refactoring operations performed

TABLE IV
FOR EACH SYSTEM, WE PRESENT THE NUMBER OF REFACTORINGS
IDENTIFIED BY THE NAIVE AND THE PROPOSED METHODOLOGIES. IN
ADDITION, WE REPORT THE REVIEWS’ ERROR RATIO BETWEEN THE TWO.

Systems Refactorings in Refactorings in Reviews’
Y Naive Methodology | Proposed Methodology | Error Ratio
linuxtools 45,710 3,665 39.00%
egit 28,420 1,239 52.56%
jeit 38,436 1,506 47.49%
java-client 2,291 303 20.62%
jvm-core 2,034 216 15.47%
spymemcached 1,017 121 26.84%

between the first and last revision of each code review. For
this study, we excluded (i) all the systems not implemented in
Java and (ii) platform.ui due to constant crashes in RefMiner
while executed in this system. We compare the results achieved
by our methodology to the results achieved by a naive one,
where rebasing operations are not properly handled.

In the naive methodology, we compare the codebase of the
first and last revisions of each code review directly. Consider
the example depicted in Figure 2. We apply RefMiner to
commits 4fcOe and d3b8b, and record the number of refactor-
ing operations reported. For this code review, we observed a
total of 16 refactoring operations being performed between the
codebase of the first and last revisions. However, we cannot
differentiate which ones are due to the code review itself and
which ones are due to external commits.

Hence, in Step 1, we compute the refactoring operations for
the first revision and its parent (d3b8b and 79432) followed
by the refactoring operations for the last revision and its parent
(4fcOe and b4a96). As a result, in Step 2, we identified that 2
refactoring operations were applied in both the first and second
revisions. In Step 3, we compared the refactoring operations
identified in the two revisions. After analysis, we noticed
that the refactoring operations reported in both revisions are
the same. Hence, no refactoring operation has been added
and/or removed during the course of code review 17890.
This indicates that the true number of refactoring operations
performed by this code review is 2.

After a qualitative analysis of these results, we confirmed
that the other 14 refactoring operations reported by the naive
methodology were due to the 5 external commits incorporated
into the system’s codebase between the first and last revision.
Hence, an empirical study that does not handle rebasing would
have observed that 14 refactoring operations were performed
in code review 17890, where, in reality, only 2 actually were.

Table IV presents the results for all code reviews and all
systems under study. Consider egit, for example. The naive
methodology identified 28,420 refactoring operations, where
our proposed methodology identified 1,239 refactoring opera-
tions. This represents a total of 27,181 wrongfully identified
refactoring operations in egit’s code reviews when rebasing is
not handled in the empirical study’s design.

In addition, we report the reviews’ error ratio for the naive
methodology. This metric indicates the proportion of code
reviews in which the naive methodology wrongfully identified
refactoring operations, in comparison to our proposed method-



ology. In jgit, for example, the naive methodology identified
wrong refactoring operations in 47.49% of all reviews. When
considering all systems under study, the average reviews’
error ratio is 33.66%. This indicates that, for this particular
empirical study, not handling the rebasing operations would
have caused inaccurate observations in 33.66% of the dataset.

We do not believe the presented methodology will be
promptly applicable for all possible empirical studies that
employ code review data. Nevertheless, its basic ideas and
future extensions might serve as a starting point for the
development of good practices when mining code review data
in the presence of rebasing.

VIII. THREATS TO THE VALIDITY

Construct: Our experimental methodology may be only valid
for code review data extracted from Gerrit. To mitigate this
threat, we designed an experimental methodology that is
based upon basic constructs that can be found in the vast
majority of open-source and industrial code review systems
in use nowadays. Hence, this assures that our methodology is
applicable beyond code review data from Gerrit.

External: Previous empirical studies have shown that different
code review communities behave differently with regards to
Git usage and practices [38], [39]. Hence, our results may
only generalise for software systems that employ similar code
review practices like the ones in the communities we studied.
To alleviate this threat, we employed a curated dataset of
code review data that include 11 systems developed by two
different well-known open-source communities: Eclipse [33]
and Couchbase [34]. In addition, we included all the 11
software systems available in the dataset to avoid ‘cherry-
picking’ and enhance the study’s generalisability.

Internal: Our method for identifying code review tampering
does not cover all possible tampering scenarios. We are aware
that code review tampering cannot be fully identified through
version control analysis alone. However, this method enables
the analysis of all 11 systems in our dataset, which would
not be possible for more sophisticated dynamic and static
analysers. Furthermore, our method represents a safe under-
approximation of code review tampering from which we
can draw reliable scientific observations. Finally, we include
advanced methods for code review tampering identification in
our directions for future work.

IX. RELATED WORK

Bird et al. [29] investigate git repositories and list potential
issues a researcher might face when performing empirical
studies that employ data from git. In addition, the authors
present guidelines on how to possibly deal with some of the
main perils of git mining. Rebasing is mentioned as a threat
in regard to ‘squashing’ several commits into a single change,
yet its side-effects on tampering with other developers’ work
are neither mentioned or investigated.

Kalliamvakou et al. [30], [40] focus on potential threats
when performing studies that employ data from the Github
platform. In this case, the authors provide comprehensive

strategies for a researcher to alleviate the identified perils. The
latter paper provides details on how Github handles rebasing,
where the discussion focuses on losing commit history. Simi-
larly to the work by Bird et al. [29], no investigation or detailed
empirical study is performed to evaluate rebasing.

German et al. [31] perform a study of how the Linux project
uses git. Alongside its main results, the authors present several
challenges they faced while executing the study. Rebasing is
largely mentioned throughout the paper as the main cause
of lost history between repositories. The authors report that
rebasing can be observed in about 20% of Linux’s commits.
However, there is no in-depth investigation of the side-effects
of rebasing in the empirical study.

X. CONCLUSION

Code review is a process in which source code changes
proposed by developers are peer-reviewed by other develop-
ers before being incorporated into the system. Code review
has been widely adopted in both industrial and open-source
software development due to its positive impact on quality
assurance and overall software quality. In addition, researchers
tend to heavily employ code review data in empirical studies
that span across multiple areas within software engineering.

Source code changes are reviewed asynchronously to en-
hance development and reviewing productivity. However, this
feature incurs side-effects to the code review process. While
a source code change is reviewed, the system’s codebase may
incorporate external commits, which will cause the need for
rebasing. External changes that alter source code files under
review have the potential not only to cause re-work and fatigue
to practitioners but also to pose serious threats for researchers.

Hence, this paper reported the first in-depth large-scale
empirical study of rebasing in real-world software systems.
We analysed code review data from 11 systems and 28,808
code reviews. Through version control analysis and mining
software repositories, we studied the frequency in which
rebasing occurs and its side-effects in the reviewing process.

Our observations indicate that developers need to perform
rebasing operations in an average of 75.35% of code reviews.
In addition, external commits modify a median of 13 files and
385 lines of code during the course of a code review. Finally,
our data suggests that an average of 34.21% of rebasing
operations tend to tamper with the reviewing process by
invalidating the source code changes currently under review.

These results indicate that rebasing operations may affect a
developer’s work routine by causing re-work of source code
changes and fatiguing reviewers. Moreover, empirical studies
that employ code review data may be prone to severe threats
to validity if rebasing is not considered. Finally, we proposed
and evaluated a methodology to handle rebasing operations in
code review data to assist researchers in obtaining bias-free
and scientifically sound observations.

As future work, we lay out the usage of static and dynamic
analysis to identify code review tampering due to rebasing. In
addition, we plan to extend our dataset and analyses to include
code review data from other communities.
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