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ABSTRACT

The next release problem is a significant task in the itera-
tive and incremental software development model, involving
the selection of a set of requirements to be included in the
next software release. Given the dynamic environment in
which modern software development occurs, the uncertain-
ties related to the input variables considered in this problem
should be taken into account. In this context, this paper pro-
poses a novel formulation to the next release problem based
on scenarios and considering the robust optimization frame-
work, which enables the production of robust solutions. In
order to measure the “price of robustness”, several experi-
ments were designed and executed over artificial and real-
world instances. All experimental results are consistent to
show that the penalization with regard to solution quality
due to robustness is relatively small, which qualifies the pro-
posed model to be applied even in large-scale real-world soft-
ware projects.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements Specifica-
tions—Methodologies

General Terms
Algorithms, Measurement, Reliability

Keywords

Next Release Problem, Robust Optimization, Search Based
Software Engineering

1. INTRODUCTION

In an iterative and incremental software development pro-
cess, a stable and executable version of the product delivered
to the clients is called release. Despite bringing many ben-
efits, this development model embodies more complexity to
the project management, including the problem of selecting
a set of requirements to be added to the software as part
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of the next release, which has become known as the Next
Release Problem (NRP). The NRP was first modeled as an
optimization problem by Bagnall et al. [1]. In this model,
each client has an importance to the organization. The goal
is to select a subset of clients which will have their require-
ments added to the next release, so that the sum of their
importance is maximized. The total cost required to satisfy
the clients is subject to a predefined bound, which must be
respected. A variation of this model was proposed by Akker
et al. [17], where each requirement has an importance value,
which estimates its revenue. The objective here is to select
a subset of requirements such that the total revenue is max-
imal and the available capacity is respected.

In order to employ an optimization technique to solve the
Next Release Problem, it is necessary to obtain the values of
importance and cost for each requirement. For instance, the
requirement importance could be indicated by the clients
and the cost determined by the development team. In both
cases, these values are obtained based on estimates, which
can be significantly hard to make due to the dynamic envi-
ronment in which software development occurs. In the work
by Harker et al. [8], requirements are classified in six types.
Among those types, five are classified as changing and only
one as stable, which stresses the evolving nature of require-
ments. In this context, requirement’s importance and cost
are among those features that can change after the initial
requirements engineering phase. Indeed, the high level of
uncertainty related to the variables of the next release prob-
lem generates a fairly complicated context, as pointed out
by Zhang, Finkelstein and Harman in [22]:

“Software engineering problems are typically ‘messy’
problems in which the available information is of-
ten incomplete, sometimes vague and almost al-
ways subject to a high degree of change (includ-
ing unforeseen change). Requirements change
frequently, and small changes in the initial stages
often lead to large changes to the solutions, af-
fecting the solution complexity and making the
results of these initial stages potentially fragile.”

More details about the impact caused by requirements’
changes during the release development can be seen in the
sensitivity analyses presented in [9]. Therefore, it seems
reasonable that the uncertainties related to requirement’s
importance and cost should be considered when solving the
next release problem through an optimization technique.

The robust optimization is an operational research frame-
work that identifies and quantifies uncertainties in optimiza-
tion problems [4]. It started to gain more visibility after [16]



and [2]. This optimization design technique admits that
some problem aspects are uncertain. From this assumption,
it builds up models which seek robust solutions, i.e., even
with noisy input data, it produces good quality solutions
while still fulfilling all constraints. Robust optimization has
been successfully applied in several engineering disciplines
including, but not limited to, production [12], aeronautical
[5], electronic [14], mechanical [13], chemical [18] and met-
allurgical engineering [6].

Accordingly, the robust optimization framework can aid
the proposition of original optimization models to the NRP,
which could deal with the uncertainties present in this prob-
lem, allowing for the production of robust solutions. How-
ever, as can be assumed, this desired robustness will nec-
essarily be accompanied by some loss in solution quality,
which needs to be contemplated. This measure of loss has
been called in the robust optimization literature as the “price
of robustness” [3].

Therefore, motivated by this context, this paper aims at
answering the following research questions:

e RQi: How to model the Next Release Problem as an
optimization problem considering the uncertainties re-
lated to its input variables in order to allow for the
production of robust solutions?

e RQ2: What is the “price of robustness” for the pro-
posed Next Release Problem model? In other words,
how much would be lost with regard to solution quality
in order to gain robustness?

Most of the works in the SBSE literature do not directly
consider the uncertainties related to the input variables,
which is also the case for the next release problem. However,
as one of the exceptions, the work in [21] proposed a model
considering the possibility of change in the requirement’s
importance. In this work, each requirement received an im-
portance value called “today value” and it was assumed that
this value, in some moment after the release development,
would change to a certain “future value”. The approach,
therefore, seeks to balance the company’s today and future
needs by considering these two requirement values, along
with the release total cost, via a multiobjective formulation.

In fact, the original and main contribution of this paper
lies in the proposal of a novel formulation to the next re-
lease problem, considering the robust optimization frame-
work, which was formally defined by Beyer et. al [4]. This
new NRP model will allow the production of robust solu-
tions by taking into account the uncertainties related to its
input variables.

The remaining of this paper is organized as follows: Sec-
tion 2 presents the proposed robust NRP formulation. Sec-
tion 3 exhibits and examines the experiments designed to
evaluate the proposed formulation. Finally, Section 4 con-
cludes the paper and points out some future research direc-
tions.

2. A ROBUST NEXT RELEASE PROBLEM
FORMULATION

Given a set of requirements R = {r1,72,...,7~}, the re-
quirement 7; importance value and cost are represented by
v; and c¢;, respectively. A basic Next Release Problem for-
mulation is presented next:

N
maximize Z VT (1)
i=1
N
subject to Z cizi <b (2)

i=1
where b is the release budget. The decision variable is a
vector X = {x1,%2,...,2n}, where x; = 1 indicates that
requirement r; is included in the next release and z; = 0
otherwise.

As pointed out in [8], the occurrence of certain events
can change the requirements’ importance values during the
release development. Therefore, this type of uncertainty
seems adequate to be quantified in a discrete and probabilis-
tic way, using the robust optimization concept of scenarios
[20]. A scenario can be defined as a set of values which
represent different contexts due to the occurrence of cer-
tain events. Thus, one can formally define a set of scenarios
S = {s1,82,...,8m}, where each scenario is represented by
s; C Sls; = {vi,v3,...,vx}, with vj expressing the impor-
tance of requirement r; in scenario s. The range a require-
ment’s importance value can vary is discrete and depends on
the set of scenarios S. In the assignment of these possible
values, one should consider the probability of those events
actually taking place. For each scenario s, it is defined an
occurrence probability ps, with Ef\il ps = 1. Thus, the re-
quirement’s importance v; in the proposed robust model is
defined as:

M
. 3)
s=1

The above requirement’s importance can be looked at as
a generalization of the importance in the basic NRP formu-
lation. In fact, by considering a single scenario ¢, with a
probability p: = 1, the requirement’s importance will be the
same as the one in Equation 1.

The uncertainty related to the cost of the requirements is
intrinsically distinct. In this case, it seems unreasonable to
expect one to raise a set of scenarios based on certain events,
since those costs usually vary independently and this change
may not be discrete. Thus, in this paper, the uncertainty re-
lated to cost will be quantified in a deterministic and contin-
uous fashion, as follows. Besides the requirement’s cost c;, it
is defined a value ¢; indicating the maximum expected cost
variation. This variation is then used to generate lower and
upper bounds to the cost ¢;, so that ¢; —¢é; < ¢; < ¢;+¢;. For
more information about uncertainties quantification strate-
gies, see [4].

Therefore, a possible robust formulation for the release
total cost is as follows:

N N
Z cixi + Z Gz (4)
i=1 =1

In the above case, besides the sum of all requirements’
costs selected to the next release, the total release cost will
also consider the sum of all respective cost variations ¢;.
This approach will guarantee that, even in the worst case,
when all selected requirements will cost their upper bounds
(given by c; + ¢;), the release budget will be satisfied. This,
clearly, represents a very conservative approach, since it as-
sumes that all cost estimates will be missed by the maximum



amount. However, in real software development projects,
different development teams have divergent estimating skills,
usually related to the team’s experience. To consider this
assumption in order to generate a more realist model, it is
defined a control parameter I' [3], which indicates the ex-
pected level of failure in the cost estimations. This way,
in the situation where the team estimates are historically
30% incorrect, in a project with 50 requirements, the con-
trol parameter would be I' = 15, indicating that there is an
expectation that 15 requirements will have real costs differ-
ent from those that were originally predicted.

Using this new control parameter, the release total cost in
the robust model proposed in this paper is computed as:

N

g Ci$i+ma1’ng,|W\§F§ Gz (5)

=1 ieW

The release total cost is composed by the sum of the cost
estimates ¢; and a second factor, which was added to guaran-
tee a certain robustness level controlled by I', as explained
next. Considering that there is an expectation that I" re-
quirements will have costs that were wrongfully predicted,
the proposed formulation will seek a subset W C R with
cardinality |W| < T', where the sum of cost variations ¢é; is
maximum. In other words, since there is no way to know in
advance which requirements may have erroneous cost esti-
mates, the model guarantees that, even if the development
team misses the costs of the requirements with highest vari-
ations, the solution will still be valid.

Once again, it is straightforward to reach the basic NRP
model or the conservative approach. Using I' = 0, it is as-
sumed that the team won’t miss a single cost estimate. In
this case, the total release cost proposed in Equation 5 will
be the same as described in Equation 2. In addition, all cost
variations will be taken into account when I' = N, which
carries the proposed formulation back to the conservative
approach materialized by Equation 4. Finally, it is notewor-
thy that it is also possible to return to the basic formulation
by setting all cost variations ¢; to 0.

Therefore, the proposed robust Next Release Problem for-
mulation is formally described as:

N M
maximize Z vapsa:i
i=1 s=1
N
subject to Zcil‘i + MATWCR,|W|<T Z Gixr; <b
i=1 ieW

where, z; € {0,1}
R is the set of requirements
N is the number of requirements
M is the number of scenarios
ps is the scenario s occurrence probability
v; is the value of requirement r; in scenario s
¢; is the cost of requirement r;
¢é; is the expected cost variation of r;
I' is the robustness control parameter

b is the release budget

Hence, the above formulation is a robust optimization

model for the next release problem which considers the un-
certainties related to the input variables of this relevant
problem which, therefore, answers the research question RQ1.

3. EXPERIMENTAL EVALUATION

In order to answer the research question R(Q)2, that is,
what is the “price of robustness” for the next release problem
as modeled in this paper, a set of three experiments were
performed, as described next:

e Experiment A: The first experiment aims at evaluat-
ing the “price of robustness” when the proposed model
is applied to artificial instances of varying sizes.

e Experiment B: In this second experiment, different
approaches for setting the cost variations ¢é; were con-
sidered. This experiment was designed to discover any
relationship between the cost variations and the “price
of robustness”.

e Experiment C: Finally, the model is applied to sev-
eral realistic instances based on real-world software
projects, in order to evaluate whether its behaviour
is similar when using synthetic data.

The experiments are presented in sections 3.1, 3.2 and 3.3,
with their respective settings, results and analyses.

In order to permit the full replication of all experiments,
all artificial and real-world instances are make available at
the paper supporting webpage - http://www.larces.uece.
br/~jeff/rnrp/ -, which also contains all results that have
to be omitted from this paper due to space constraints.

3.1 Experiment A

As mentioned earlier, an increased level of solution ro-
bustness should naturally generate some loss in the solution
quality. In this first experiment, the proposed robust model
has been applied to a set of artificial instances in order to
measure the “price of robustness” for the proposed formula-
tion. The goal is to estimate how much is lost with regard
to fitness value as there is an increase in robustness.

3.1.1 Settings

The artificial instance set is composed of 7 randomly gen-
erated instances. Each instance has 3 scenarios and each
requirement’s importance value v; can assume an integer
between 1 and 10. The cost ¢; also varies from 1 to 10. The
cost variation é; is set to 10% of the respective cost. To en-
sure that it is impossible to include all requirements in the
next release, the release budget is set to 70% of the sum of
all requirements’ costs. The instances were generated with
different numbers of requirements, ranging from 50 to 200.
In this paper, the artificial instance name is in the format
LS_R, where R is the number of requirements. The instance
1.S_100, for example, has 100 requirements.

In the experiments, the metaheuristics Simulated Anneal-
ing and Genetic Algorithm were considered, as described
next:

e Simulated Annealing: algorithm for solving ordi-
nary optimization problems, based on the thermody-
namics’ annealing process [11].



e Genetic Algorithm: widely known evolutionary al-
gorithm, already applied in many optimization prob-
lems and inspired by the Darwin’s natural selection
theory [10].

Each algorithm configuration was empirically obtained,
after several preliminary experiments over different instances.
The final configurations are described next:

Simulated Annealing. Initial and final temperatures
were set to 100 and 1072, respectively. Cooling rate equals
to 0.9995. At each iteration, N (number of requirements)
neighbour solutions are evaluated. A neighbour solution is
defined as a solution that can be produced from the original
one with one requirement addition or removal.

Genetic Algorithm. Population with N individuals.
The initial population is randomly generated and composed
by feasible individuals. Crossover probability is set to 0.9,
using one point crossover. Mutation is performed for each re-
quirement with a 1/(10.N) probability, consisting of a single
requirement inclusion/exclusion. Both crossover and muta-
tion might generate invalid individuals. Therefore, a repair-
ing method was designed, randomly removing requirements
from the individual until the solution becomes feasible. The
implementation employs elitism, with 20% of the best in-
dividuals in the population being automatically included in
the next generation. The algorithm returns the best indi-
vidual after 10000 generations.

Since the metaheuristics are non deterministic approaches,
each algorithm was executed 10 times for each instance, to
obtain fitness value averages and standard deviations.

In order to measure the “price of robustness”, it is consid-
ered a ‘reduction factor’ [3], which indicates the percentage
of loss in fitness value due to robustness. Thus, assuming
ay as the fitness value average for I' = k.N, the ‘reduction
factor’ dy is calculated as follows:

Sk =100 x (1 — <) (6)
(e74]

Therefore, in order to evaluate how the control parame-
ter I impacts the solution quality, each instance was solved
using different robustness levels, varying I" from 0 to V.

3.1.2  Results and Analyses

Table 1 presents the fitness values computed by the Simu-
lated Annealing, while Table 2 presents the results produced
by the Genetic Algorithm, considering different levels of ro-
bustness. As expected, as there is a gain in robustness, the
fitness value decreases. For both metaheuristics, a similar
behavior was observed in that regard.

In average, the GA performed better than SA. Further-
more, the GA’s standard deviations were significantly smaller
than those obtained from SA.

Interestingly, the decrease in fitness value is smoother then
linear. For instance, with I' = 0.5N, the loss in fitness value
is only insignificantly higher when compared with the pre-
vious robustness level ' = 0.25N, representing around 1%
in average. These results indicate that a significant gain
in robustness can be obtained with very little loss in solu-
tion quality. To highlight that behavior, Figure 1 presents
the fitness values computed for the instance [.S_70, both by
the Simulated Annealing and the Genetic Algorithm. It is
noteworthy the significantly small fitness loss after I' is set
to half the number of requirements. This feature is present

Table 1: Simulated Annealing results, regarding the
fitness values when increasing the solution robust-
ness

Instance )
0 0.25N 0.5N 0.75N N
1.S.50 231.08 | 227.69 | 225.37 | 223.34 | 222.82
+ 284 | £3.04 | £4.47 | £2.62 | £3.70
1.S.70 297.72 | 293.06 | 287.74 | 288.58 | 288.76
+1.90 | £4.30 | £4.46 | £ 3.84 | £ 4.67
1.S.100 371.18 | 365.05 | 360.54 | 358.01 | 358.44
+4.41 | £4.63 | £3.82 | £3.46 | £+ 3.14
1.S.120 474.34 | 466.75 | 461.73 | 460.86 | 461.43
+394 | £593 | =4.06 | & 3.28 | & 4.96
1S 150 594.52 | 590.07 | 580.74 | 579.12 | 578.07
+6.60 | £9.85 | £7.60 | £5.17 | £ 5.80
1S.170 666.63 | 663.54 | 659.98 | 652.80 | 652.57
+ 6.57 | +£8.67 | £6.05 | £6.91 | £+ 6.09
1.S.200 731.95 | 725.51 | 724.45 | 717.19 | 720.67
+943 | £5.68 | £9.13 | & 6.54 | & 6.63

Table 2: Genetic Algorithm results, regarding the
fitness values when increasing the solution robust-
ness

Instance )
0 0.25N 0.5N 0.75N N
1550 256.93 | 250.77 | 247.11 | 246.27 | 246.27
+ 0.00 | £0.42 | £0.20 | £ 0.00 | £ 0.00
1.S.70 342.39 | 333.23 | 327.73 | 326.34 | 326.37
+022 | £052 | £0.68 | £0.40 | £0.34
1.S.100 450.20 | 439.98 | 434.01 | 431.79 | 431.63
+0.46 | £0.50 | £0.71 | £0.20 | £ 0.46
1.9.120 581.46 | 568.39 | 561.38 | 558.29 | 558.47
+0.40 | £0.46 | £0.45 | £0.51 | £0.49
15150 740.09 | 720.90 | 709.85 | 706.44 | 705.97
+ 041 | £0.58 | £0.62 | £0.26 | £ 0.51
1.S.170 850.20 | 828.74 | 816.51 | 812.51 | 812.50
+0.32 | £0.65 | £0.39 | £0.65 | £0.53
1.S.200 948.62 | 923.69 | 910.62 | 905.28 | 904.48
+0.76 | £0.65 | £0.42 | £0.68 | £ 0.47

in both algorithms, but seems less visible in SA due to its
higher fitness variation.

Table 3 presents the reduction factors computed by the
Simulated Annealing and Table 4 the results found by the
Genetic Algorithm. In general, the fitness value loss is con-
siderably small. Considering all instances, it is possible to
obtain a 50% robustness level (I' = 0.5N) by losing, in aver-
age, only 2.24% and 3.88% in fitness value, for the SA and
GA respectively. In the worst case (I' = N), where the de-
velopment team is expected to miss all cost estimates, the
SA loses only 2.73% and the GA gives up 4.37% in solution
quality, in average.

Figure 2 highlights, for instance 1.S_120, the reduction
factors computed by the two algorithms. For most I' values,
the GA’s reduction factor is higher than SA’s. In addition,
as can be seen, a maximum of almost 4% reduction in solu-
tion quality is reached, even for maximum robustness levels.

The interesting results described above partially answer
RQ2 and clearly show that the proposed robust next release
problem formulation can help protecting against the uncer-
tainties related to the input variables with little penalization



Figure 1: Fitness values comparison between SA and

GA for the instance I_S_70
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Table 3: Simulated Annealing results, regarding the
reduction factor when increasing the solution ro-

Table 4: Genetic Algorithm results, regarding the
reduction factor when increasing the solution ro-

bustness
Instance I

0.25N 0.5N 0.75N 0.9N N
1.S_50 2.40 3.82 4.15 4.20 4.15
1.S_70 2.68 4.28 4.69 4.79 4.68
1.S_100 2.27 3.60 4.09 4.17 4.13
1.5.120 2.25 3.45 3.99 3.93 3.95
1.S_150 2.59 4.09 4.55 4.60 4.61
1.S_170 2.52 3.96 4.43 4.44 4.43
1.S5_200 2.63 4.01 4.57 4.68 4.65

bustness
Instance I
0.25N | 0.5N | 0.75N | 0.9N N
1.S_50 1.46 2.47 3.35 3.47 3.57
1.S_70 1.56 3.35 3.07 3.90 3.01
1.5_100 1.65 2.87 3.55 3.47 3.43
1.S_120 1.60 2.66 2.84 2.70 2.72
1.S_150 0.75 2.32 2.59 3.02 2.77
1.S.170 0.46 1.00 2.07 1.27 2.11
1.S_200 0.88 1.02 2.02 1.53 1.54

with respect to solution quality.

3.2 Experiment B

As stated earlier, the cost variations ¢; were set to repre-
sent 10% of the respective cost ¢;. In practice, these vari-
ations may be estimated in different ways. Hence, in this
experiment, the “price of robustness” is computed with dif-
ferent approaches for estimating the ¢é; values.

3.2.1 Settings

Basically the same artificial instances, described in the
previous section, were used in this second experiment. The
single difference relies on the strategy employed to produce
the expected cost variations. This way, besides varying the
percentage from 10% to 50% of the original cost, a random
approach was also introduced, where each requirement’s cost
variation ¢; is independently generated as a random number
between 0 and 50% of c;.

The Simulated Annealing and Genetic Algorithm were
configured exactly as described in the previous section.

3.2.2  Results and Analyses

Figure 3 presents the particular reduction factors com-
puted by the Simulated Annealing while Figure 4 presents

the Genetic Algorithm’s results, both for the instance 1_S_120.

As can be noticed and as expected, the higher the cost vari-
ation, the higher the reduction factor. However, this growth
is not linear and even with significantly high variations, it is

Figure 2: Reduction factor comparison between SA
an GA for the instance 1.S 120
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still possible to reach significant robustness levels with little
loss in fitness value. As an illustrative example, considering
the expected cost variation to be half of the requirement’s
original cost (& = 50% of ci), a 100% robustness level can be
achievable by sacrificing only around 17% in fitness value.
Still according to the results, a variation increase tends to
close the gap between the SA and GA reduction factors,
with SA losing more fitness value than GA in some cases.

In Figure 5 are presented the reduction factors computed
by the GA with different variation values for the instance
1.S_170. Comparing with instance 1.S_120, the results are
clearly similar. For others instances, the results are also
very much alike, but due to space constraints, they have
been omitted from this paper.

Thereby, the “price of robustness” of the proposed model
remains interestingly low even when considering different
strategies for generating the cost variations.

3.3 Experiment C

This experiment aims at evaluating the “price of robust-
ness” of the proposed robust model in real-world instances,
which are described next.

3.3.1 Settings

The real-world instances used in this experiment were
adapted from the work by Xuan et al. [19]. In his paper,
Xuan extracted the instances to the next release problem
from bug repositories of three big open source projects, in-



Figure 3: Simulated Annealing price of robustness
with different cost variation approaches for the in-
stance 1.S_120
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Figure 4: Genetic Algorithm price of robustness
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cluding Eclipse (a java integrated development environment)
[7] and Mozilla (a set of web applications) [15].

A bug repository is a forum where users (end users, de-
velopers, testers, etc) can report bugs related to the project.
Each bug is then considered as a requirement. In this forum,
one bug report may be commented by many users. The re-
quirement’s importance value is then calculated as the num-
ber of users that commented on that particular bug report.
In addition, the bug severity is mapped to the requirement’s
cost. Both the requirement’s importance and cost are nor-
malized to fall into the 1 to 10 interval. In all cases, each
instance was considered to have only one scenario ¢t (with a
probability p, = 1).

Three instances, composed by the most important require-
ments, were extracted from each bug repository. The in-
stances contain 50, 120 and 200 requirements, respectively.
The real-world instance names are in the format I_Re_P_R,
where P represents the project (E for Eclipse and M for
Mozilla) and R is the number of requirements. The instance
I Re_E_120, for example, was generated from the eclipse bug
repository and has 120 requirements.

Since the Genetic Algorithm has systematically produced
better solutions in previous experiments both regarding fit-
ness values and standard deviation, only this metaheuristic
was considered in this experiment. Its configuration is the
same as described previously.

Figure 5: Genetic Algorithm price of robustness
with different cost variation approaches for the in-
stance 1.S_170
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3.3.2  Results and Analyses

Table 5 presents the results for fitness value found by the
Genetic Algorithm for each real-world instance, with the re-
quirement’s cost variation set to 10% of the original cost. As
can be seen, the model behaves nearly the same for artificial
and real-world instances, which helps validating all results
obtained in Experiment A. Once again, for I' = 0.5N, the fit-
ness value decrease becomes minimum when compared with
previous robustness levels, even for the instances with 200
requirements.

Table 5: Genetic Algorithm fitness values results for
the realistic instance set and standard deviation set
to 10% of the cost

Inst T
nstance 0 025N | 05N | 0.756N N

[ Re 5o | 16336 | 150.09 | 155.45 | 155.18 | 155.45
—He-b +082 | +£000 | +0.00| 4082 | +0.00
330.82 | 332.00 | 323.45 | 322.27 | 321.01
LRe 120 | 068 | £1.08 | +£0.68 | +045 | + 0.27
513.55 | 500.18 | 487.27 | 484.73 | 484.36
LRe B200 | "y o5 | 1191 | £1.00 | +0098 | + 1.67
195.79 | 192.14 | 187.43 | 186.71 | 186.64
LRe M50 | 698 | £0.00 | +£0.65 | + 057 | +0.46
361.71 | 354.57 | 347.21 | 344.00 | 344.00
LReMI20 1 g0 | 2173 | 2201 | + 1.16 | + 1.51
497.21 | 486.07 | 475.64 | 472.14 | 472.36
LRe M-200 | 650 | £1.02 | £0.50 | + 055 | + 085

Regarding reductions factor, Table 6 presents these results
for each real-world instance. As mentioned earlier, even in
the large real-world instances, the fitness value reduction
after I' = 0.5N is very small. As an example, the results
over real-world instances show that it is possible to reach a
100% robustness level losing only 5.12% of the fitness value,
in average.

Figure 6 presents the reduction factor computed by the
Genetic Algorithm for the instance I_Re_E_120 with different
cost variation approaches. In Figure 7 are presented the
same results for instance I.Re_E_200.

The reduction factors of both real-world instances are very
similar, akin to the behavior found in the artificial instances.
For the Mozilla real-world instance I_Re_M_120, the results
are also very consistent, as can be seen in Figure 8.



Table 6: Reduction factors computed by the Genetic
Algorithm for the realistic instance set and standard
deviation set to 10% of the cost

Instance [

0.25 0.5N | 0.75N | 0.9N N

L. Re_E_50 2.62 4.84 5.01 5.23 4.84

I Re_E_120 2.27 4.82 5.16 5.22 5.27

I_Re_E_200 2.60 5.12 5.61 5.52 5.68

I_Re_M_50 1.86 4.27 4.63 4.63 4.67

L. Re_-M_120 2.27 4.82 5.16 5.22 5.27

I_Re_M_200 2.24 4.34 5.04 5.09 5.00

Figure 6: Genetic Algorithm price of robustness
with different cost variation approaches for the real-
world instance I_Re_E_120
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In conclusion, all results reported in this experiment are
consistent to show that the behavior of the proposed robust
formulation, regarding its “price of robustness”, are similar
to those found over artificial instances. That is, the penal-
ization due to robustness is very small, which qualifies the
proposed approach to be considered in real software projects.

Finally, the results obtained in the three experiments help
answering RQ2, pointing out to the ability of the model
to produce robust solution with significantly small loss in
quality.

3.4 Threats to Validity

The aspects that could affect the validity of the experi-
mental results described in this paper are:

1. Relatively small number, size and diversity of instances:
Even though the paper considers 7 artificial and 6 real-
world instances, a higher number of instances would,
clearly, produce more reliable results.

2. Parameterization of algorithms: In the experiments,
the values for the algorithms’ parameters were empiri-
cally calculated through a simplified experimental pro-
cess. A more comprehensive parameterization process
would be beneficial to the validity of the reported re-
sults.

4. CONCLUSION AND FUTURE WORKS

Figure 7: Genetic Algorithm price of robustness
with different cost variation approaches for the real-
world instance I_ Re_E_200
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Figure 8: Genetic Algorithm price of robustness
with different cost variation approaches for the real-
world instance I Re_M_120
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The next release problem is an important task in the it-
erative and incremental software development model. For
this problem, optimization models have been proposed to
search for solutions based on estimates of requirements’ im-
portance and cost. However, such estimates may turn out
to be erroneous, which can invalidate the search process.

This paper proposed an original robust formulation, based
on scenarios, for the next release problem, which takes into
account the uncertainties present in the input variables. In
the proposed model, the uncertainties related to the require-
ment’s importance were modeled in a discrete way using
the concept of scenarios. Differently, the uncertainties re-
garding requirement’s cost were treated in a continuous way
by considering the expected cost variation for each require-
ment, along with a control parameter which allows for the
adjustment of the desired level of robustness based on the
development team estimating history.

The proposed robust model was applied to both artifi-
cial and real-world instances extracted from bug reposito-



ries of two large open source software projects (Eclipse and
Mozilla). In order to evaluate the “price of robustness” for
the proposed model, three sets of replicable experiments
were designed, executed and analysed.

The first experiment was applied over artificial instances,
using a cost variation set to 10% of the original require-
ment’s cost. As a result, it was demonstrated that the gain
in robustness was obtained with a loss in fitness value con-
sistently and significantly small for all instances. Further-
more, results showed a nearly constant decrease in fitness
value when the robustness control parameter was calibrated
to at least half the number of requirements. In the second
experiment, the “price of robustness” was computed for the
artificial instances with different cost variation approaches.
As expected, the higher the cost variation, the higher the
fitness value loss. Nonetheless, even with high variations, it
was still possible to achieve high robustness levels by losing
only a small fitness fraction. The last experiment applied the
robust model to a set of real-world instances. The results
were nearly the same as for the artificial instances.

Accordingly, all results indicate that the proposed formu-
lation can be employed to produce robust solutions with
very little loss with regard to quality, even in large-scale
real-world projects.

Since this is the first work to employ the robust optimiza-
tion framework, in the search based software engineering
field, a natural future research direction points out to the
application of this framework to other requirements engi-
neering problems, as well as to other software engineering
problems subject to uncertainties. In addition, specifically
related to the next release problem, other experiments could
be proposed to evaluate the “price of robustness” under dif-
ferent numbers of scenarios and different release budgets. Fi-
nally, it seems also interesting to consider other metaheuris-
tics, such as ant colony optimization or particle swarm op-
timization, as well as exact techniques, to evaluate whether
different behaviors can be found.
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