
We Need to Talk about Microservices: an Analysis
from the Discussions on StackOverflow

Alan Bandeira, Carlos Alberto Medeiros, Matheus Paixao, Paulo Henrique Maia
{alan.bandeira,carlos.fernandes}@aluno.uece.br, {matheus.paixao, pauloh.maia}@uece.br

State University of Ceara - Fortaleza, Brazil

Abstract—Microservices are a new and rapidly growing ar-
chitectural model aimed at developing highly scalable software
solutions based on independently deployable and evolvable com-
ponents. Due to its novelty, microservice-related discussions are
increasing in Q&A websites, such as StackOverflow (SO). In
order to understand what is being discussed by the microservice
community, this work has applied mining techniques and topic
modelling to a manually-curated dataset of 1,043 microservice-
related posts from StackOverflow. As a result, we found that
13.68% of microservice technical posts on SO discuss a single
technology: Netflix Eureka. Moreover, buzzwords in the microser-
vice ecosystem, e.g., blue/green deployment, were not identified
as relevant subjects of discussion on SO. Finally, we show how
a high discussion rate on SO may not reflect the popularity of a
certain subject within the microservice community.

Keywords-Microservice; StackOverflow; Topic Modelling

I. INTRODUCTION

In the traditional monolithic architecture, a software system
is constructed as a single logic unit that aggregates several
services that share the same computational resources (e.g.,
memory space, CPU processing and database) in order to
provide business functionalities [1]. Although monolithic ap-
plications are simple to be developed, they present limitations,
such as difficulties to maintain and evolve, followed by ineffi-
cient scaling of computational resources, which may cause an
over(under)provisioning of those resources [2].

With the advance of cloud computing and containerization
technologies, microservices arise as a novel architectural style
to develop a single application as a collection of independent,
well-defined, and intercommunicating services [1][3]. Since
microservices can be individually scaled, they provide an
efficient manner to allocate computational resources, enabling
flexible horizontal scaling in cloud environments [4].

For this reason, this new architectural style has been adopted
by notorious tech companies, such as Netflix, Uber and
LinkedIn [5], which, in turn, is pushing both industrial and
open source software development through continuous contri-
butions of open source tools backed up by large cloud comput-
ing providers such as Microsoft and Amazon [6]. Furthermore,
recent studies have proposed processes and frameworks to
migrate legacy monolithic systems to a microservice-based
architecture, thus benefiting companies that desire to reuse and
evolve their current systems [7][8][9][10].

Due to its novelty, the microservice architecture has brought
new (and evolved existing) concepts, technologies and tools
from both software engineering and distributed systems [6],
which is reflected in the rapid increase of discussions about

the subject in Q&A websites, such as StackOverflow (SO).
Although SO has been successfully used in studies regarding
different domains, such as mobile applications [11][12], cloud
computing [13], software architecture [14], and web-based
communication systems [15], to the best of our knowledge,
there is no work that investigates how microservices are being
debated in SO. This analysis is important since it may guide
both academic and industrial research towards solutions that
have the potential to impact real-world software engineering
practitioners with respect to this new architectural style.

Therefore, this paper presents an analysis that aims at
answering two research questions: “what microservice-related
subjects are developers discussing on StackOverflow?” (RQ1)
and “what microservice-related subjects receive the most at-
tention from developers?” (RQ2). The contributions of this
paper are threefold: (i) a categorization of microservice-related
discussions in SO; (ii) a replicable framework for extracting
technical and conceptual subjects from discussions in SO; (iii)
a manually curated dataset of microservice discussions in SO.

II. BACKGROUND AND DEFINITIONS

Our goal is to study discussions on SO, i.e., exchanges of
ideas between two or more people concerning a certain subject.
Therefore, questions that received no answers, or questions in
which all the answers were given by the question’s author are
not interesting to our study. Moreover, since comments on SO
do not consist of a response to the question [16], we have not
considered them in our study. Hence, we define a discussion
on SO as being a combination of a question and one (or more)
answers, where there is at least one answer whose author is
not the author of the question.

On StackOverflow, a user has the choice of selecting one
or more tags to describe a question. The set of tags is mostly
used to indicate the question’s subjects and to identify other
SO users that might be able to provide an answer to the
question. For this study, we consider as microservice-tagged
the discussions in which the question’s author employed the
‘microservices’ tag. Note that SO enforces that variations on
the spelling of microservices will always be mapped to the
same tag. Moreover, we noticed that not all microservice-
tagged discussions concern microservice subjects. Thus, we
consider as microservice-related the subset of discussions
that actually discuss ideas, notions and concepts related to the
microservice ecosystem. More details on the identification of
microservice-related discussions are provided in Section III-B.



‘microservices’
tag

SOTorrent 2980
microservice

questions

discussions
filtering

2186
microservice
discussions

popularity
analysis

new
technologies

microservice
technologies

topics
interpretation

262
non-related
discussions

313
conceptual
discussions

468
technical

discussions

Phase 1: Identification of Relevant Discussions

Phase 2: Classification of Discussions

1043 
relevant

microservice
discussions

Phase 3: Topic Modelling

topic modelling

technical
subjects

conceptual
subjects

pre-processing

Fig. 1: Framework for extracting technical and conceptual
subjects from discussions on SO. Phase 1 identifies relevant
microservice discussions, and phase 2 performs a manual anal-
ysis to identify technical and conceptual discussions. Phase 3
employs topic modelling to group the discussions into subjects.

III. EMPIRICAL STUDY DESIGN

Our goal is to study microservice-related discussions on
StackOverflow. Hence, we ask two research questions:
RQ1: What microservice-related subjects are developers dis-
cussing on StackOverflow?
RQ2: What microservice-related subjects receive the most
attention from developers?

Our supporting website [17] presents a complete replication
package for our study, including the raw data and outcomes
for all steps of our experimental methodology and analyses.

A. Identification of relevant discussions on StackOverflow

In this paper, we make use of the SOTorrent dataset [18]
(release 2018 09 23). The framework we employed to iden-
tify microservice-related discussions from SO is displayed
in Figure 1. The framework consists of three phases. On
the first phase, we retrieved all questions from SOTorrent
in which the author used the microservices tag, resulting in
2,980 microservice-tagged questions. Next, we filtered the
discussions, as described in Section II. This resulted in a total
of 2,186 microservice-tagged discussions.

SO employs five different proxies for popularity: Answer-
Count, ViewCount, CommentCount, FavoriteCount, and Score.
For each of these metrics, we ranked the microservice-
tagged discussions and extracted all discussions above the
3rd quartile of the distribution. Our rationale is that popular
questions in the SO community will less likely be affected by
noise [19][20]. Finally, we collected a corpus of 1,043 relevant
microservice-tagged discussions according to each of the five
popularity proxies employed by SO.

B. Classification of microservice discussions

The second phase of our experimental framework aims at
classifying the microservice-tagged discussions into separate

subsets. Consider the discussion whose question is “How to
stop a spring boot service from command line?”, for example.
As one can see, this discussion is much more related to
Spring Boot than to microservices. Hence, we defined this type
of discussions as Non-Related Discussions. In addition, we
noticed that some discussions debated microservice subjects
at different levels. While some dealt with low-level technical
issues, such as “Host WepAPI on Service Fabric”, others
debated high-level concepts, e.g., “Microservices: what are
pros and cons?”. These two types of discussions are inherently
different and need to be studied in a separate fashion. Thus, we
defined the first type of discussions as Technical Discussions
and the second one as Conceptual Discussions. Note that the
union of technical and conceptual discussions forms the set of
microservice-related discussions.

We employed a manual analysis procedure to classify each
microservice-tagged discussion into one of the three discussion
types defined above. In the manual analysis, two authors of
the paper separately served as reviewers for the same subset
of discussions. In case of disagreement, the two reviewers
debated the classification until an agreement was reached.
In case of no agreement after debating, a third author was
involved to settle the classification.

Initially, we considered technical discussions to be the ones
mentioning microservice technologies. Thus, we leveraged the
list of 42 microservice technologies provided by Jamshidi
et al. [6]. Through a mixed method of token matching and
regular expressions, we identified a preliminary set of tech-
nical discussions. To cover for microservice technologies not
included in the list, we manually reviewed the discussions not
initially classified as technical to identify additional technolo-
gies. Finally, we identified 27 new microservice technologies,
resulting in a final set of 468 technical discussions. For this
manual analysis, the inter-reviewer agreement rate was 94.4%.
Next, we manually analyzed the remaining 575 discussions to
identify the conceptual and non-related discussions. As a re-
sult, we reached the final subset of 313 conceptual discussions
and 262 non-related discussions. For this manual analysis, the
inter-reviewer agreement rate was 74.9%.

C. Topic Modelling

On the third phase, we employed topic modelling to group
both technical and conceptual discussions into different sub-
jects and categories. First, we performed three pre-processing
steps according to surveys and guidelines on the application of
topic modelling in software engineering [21][22]: stop words
removal, lemmatization and pruning. For stop words removal
and lemmatization, we employed a curated dataset of English
stop words [23] and the SpaCy library [24], respectively. For
pruning, we removed the words that appeared in more than
80% and less than 2% of the documents [21].

For the topic modelling, we employed Latent Dirichlet
Allocation (LDA) [25], and the mallet tool [26]. The LDA
settings were configured based on guidelines [21], followed by
empirical experimentation on our own dataset. We used k =
20 topics, being each topic described by 15 words. The same



Technical

Communication
Message Queue (9.62%)

REST (6.41%)

Security

Data Handling

Token Authentication (5.34%)

Best Practices

Deployment

Development

Technologies

Infrastructure

Patterns

API Gateway (6.20%)

Service Discovery 
and Load Balance

Circuit Breaker (1.92%)

Code Sharing (3.42%)

Dependency Management (3.21%)

Migration (7.05%)

Testing (2.78%)

Netflix Eureka (13.68%)

Microsoft Technologies (7.48%)

Amazon Technologies (2.78%)

Containers (10.90%)

Network (4.49%)

Resource Management (2.14%)

Conceptual

Communication Message Queue (8.62%)

REST (4.15%)

Security

Data Handling

Token Authentication (11.82%)

Best Practices

Deployment

Resilience

Patterns

API Gateway (8.31%)

Service Discovery 
and Load Balance

Fault Tolerance (2.88%)

Data Exchange (3.19%)

Strategies ESB (1.60%)

Cross Service Authentication (6.07%)

Data Denormalization (10.86%)

Data Sharing (4.16%)

DDD (3.83%)

Architecture (10.86%)

Versioning (4.79%)

Integration Testing (4.15%) 

(a) Technical Subjects (b) Conceptual Subjects

(5.98%)

(16.03%)

(14.10%)

(16.46%)

(23.94%)

(17.53%)

(3.19%)

(17.56%)

(17.89%)

(15.02%)

(26.19%)

(8.94%)

Local/remote (3.42%)

Data Sharing and Database Scaling (4.70%)

Fig. 2: Categorization of microservice-related subjects discussed in technical and conceptual discussions on StackOverflow, as
identified by LDA topic modelling. In addition, we report the proportion of discussions in which each subject is discussed.

settings were used for the LDA execution on both technical
and conceptual discussions.

Finally, the topics provided by LDA were interpreted by all
authors of the paper in group sessions, where we created a cat-
egorization for each subset of discussions. Furthermore, LDA
provides not only the set of topics but also the similarity of
each discussion to each extracted topic. Hence, we leveraged
this information to identify the most discussed subjects.

IV. EMPIRICAL STUDY RESULTS

A. RQ1: What microservices-related subjects are developers
discussing on StackOverflow?

Our interpretation for LDA’s extracted topics for the tech-
nical and conceptual discussions are displayed in Figures 2a
and 2b, respectively. Each of the 20 topics extracted by LDA
was interpreted as a single subject of discussion. These are
represented by the endpoints in the categorization. In addition,
we merged related topics into the same subject. For technical
discussions, we merged two topics into Message Queue and
other two into Microsoft Technologies, obtaining 18 technical
subjects. For conceptual discussions, we merged two topics
into Message Queue, two topics into DDD and two topics into
Data Sharing. Finally, we interpreted one of the conceptual
topics as inconclusive, resulting in 15 conceptual subjects.

The categories were designed by us to group related subjects
into high-level concerns. Furthermore, for each subject and
category, we display the percentage of discussions described
by the subject. Consider the REST subject, for example. The
figure indicates that one of the topics extracted by LDA for
the technical discussions is related to the REST technology. In
addition, 6.41% of technical discussions are discussing REST.

Due to space constraints, we cannot delve into all the details
of our categorization. Nevertheless, we discuss a few key
points next. First, consider the Message Queue and Token
Authentication subjects, for example. These concepts arose as
solutions and patterns for new challenges presented by the
microservice architecture. As one can see, both are highly
discussed subjects, as 9.62% and 8.62% of technical and con-
ceptual discussions debate Message Queue, respectively. For
Token Authentication, the results are 5.34% and 11.82%. The
high rate of discussion for these two subjects in both technical
and conceptual discussions indicate that these subjects may
still be considered as ‘open problems’. Even though developers
discuss the tools that implement these subjects, SO’s users are
still discussing the basic concepts around these subjects in
order to obtain a better understanding of these concepts.

Differently, consider the Containers subject. Although rep-
resenting 10.90% of technical discussions, Containers are not
discussed in conceptual discussions. This may indicate that
this is a well-defined and understood concept within the
microservices community, in which developers mostly discuss
the tools and technologies that implement it.

Although similar, microservices are not a variation or an
evolution of SOA [27]. Nevertheless, we noticed that the
difference between microservices and SOA was a cross-
cutting concern within microservice discussions on SO. This is
exemplified by the Architecture subject, which was discussed
in 10.86% of conceptual discussions, where developers mostly
discussed the differences between these architectural styles.

Moreover, one may notice that 1.60% of conceptual dis-
cussions are concerned with the ESB pattern. ESBs were a
dominant communication strategy in SOA applications, yet
its usage in the microservice architecture is highly inad-



visable [1][28]. Hence, ESBs do not appear as a subject
in technical discussions, which indicates that the microser-
vices community indeed avoids this communication strategy.
A similar scenario concerns the Fault Tolerance subject in
conceptual discussions. Although it is a relevant and serious
issue in SOA applications, its lack of discussion in technical
discussions may indicate that this a ‘solved’ problem in the
microservice ecosystem. In fact, fault tolerance is seemingly
transparent for microservice developers nowadays as most
cloud providers, such as Microsoft and Amazon, provide fault
tolerance capabilities [29][30].

We also highlight subjects that are not listed in either techni-
cal nor conceptual categorizations. Consider canary testing and
blue/green deployment, for example. Both subjects received a
great amount of attention from both academic [31][32] and
industrial [33][34] practitioners due to its applicability to the
microservice architecture, yet these do not appear as subjects
of discussion on SO. On the one hand, this may indicate
that microservice developers are still mostly unaware of such
deployment strategies. On the other hand, canary testing and
blue/green deployment might simply not appeal to the wider
microservice developer community.

As an answer to RQ1, we report developers discussing
subjects related to Communication, Security, Data Handling,
Best Practices and Deployment in both technical and con-
ceptual discussions. Subjects concerned with Development,
Technologies and Infrastructure are only discussed in technical
discussions while Resilience is only discussed in conceptual
discussions. Moreover, subjects discussed in both technical
and conceptual discussions may indicate open problems in
the microservice ecosystem. Differently, the absence of certain
subjects from technical discussions may indicate either ‘solved
problems’ or concepts that need a wider uptake by microser-
vices practitioners. Finally, our observations are based on our
interpretation of the categorization, where additional studies
are necessary for a full comprehension of these phenomena.

B. RQ2: What microservice-related subjects receive the most
attention from developers?

In RQ1, we presented the microservice-related subjects
being discussed on StackOverflow, followed by the number
of discussions concerned to each subject. In this context, one
may assume that the amount of discussions on SO directly
reflects the attention a subject receives from the community. To
investigate this assumption, for both technical and conceptual
discussions, we ranked the subjects according to each of
the five popularity metrics employed by SO, as described in
Section III-A. Due to space constraints, we limit our discussion
to the ViewCount and AnswerCount metrics, as these reflect
the most different aspects of SO’s popularity.

For technical discussions, the discussions related to Netflix
Eureka present a total of 116,485 views and 102 answers on
SO, being ranked 1st for both metrics. In this case, we assessed
that the subject with the largest number of discussions has also
received most of the attention from the community. However,
this is not the case for other subjects in technical discussions.

Containers, for example, represent the second biggest amount
of discussions, yet it is ranked 7th and 4th in number of
views and answers, respectively. This indicates that although
constantly asked, containers questions neither attract many
developers nor encourage users’ interaction.

When considering conceptual discussions, we noticed that
the two subjects with most discussions (Token Authentication
and Data Denormalization) ranked 1st and 2nd in both num-
ber of views and number of answers. However, DDD only
represents 3.83% of conceptual discussions, yet it ranked 4th

in number of answers. This indicates that particular subjects
may attract more discussion than others.

Finally, we highlight that popularity and attention on Stack-
Overflow do not reflect the quality and/or amount of devel-
opers concerned to a certain subject or technology. As an
example, our data indicates that Microsoft Technologies are
more discussed than Amazon Technologies, while also being
ranked above for both number of views and answers, yet
Amazon holds the biggest market share in the cloud computing
ecosystem [35]. Similarly to RQ1, further studies and analyses
are necessary for a complete understanding of this issue.

V. THREATS TO THE VALIDITY

External: Our observations may not generalise for the entire
microservice development ecosystem since we consider the
data from a Q&A website as a representative sample of the
community. To mitigate this threat, we used the StackOverflow
data, which is the biggest computer science Q&A platform,
being employed in many other studies [11][12][13][14][15].
Internal: Our manual classification of discussions and inter-
pretation of topics may present personal biases. To alleviate
this threat, the manual classification involved three authors
of the paper, in which we achieved up to 94% agreement
rate. The topics’ interpretation was performed in open-debate
sessions involving all authors of the paper. In addition, there
might be microservice-related discussions that did not employ
the ‘microservices’ tag, and therefore, were not included in
our study. Nevertheless, we identified and analysed 1,043
discussions, which we consider to be a representative sample
to base our observations upon.

VI. CONCLUSION

This paper presented an analysis of microservice-related dis-
cussions on StackOverflow. We classified 1,043 microservice-
tagged posts into technical (44.87%), conceptual (30%) and
non-related (25,13%) discussions and, taking into account the
first two groups, we categorized the discussions using a topic
modelling approach. We found 18 and 15 subjects for technical
and conceptual discussions, respectively. Our findings indicate
that Netflix Eureka is the most viewed and answered subject
within technical discussions, while its conceptual counterpart
is Token Authentication.

As future work, we plan to perform a detailed analysis
regarding subjects’ popularity on SO and its connection to
usage in the microservice ecosystem. More specifically, we
intend to share and discuss our findings with the microservice
developer community in order to validate and enrich our study.



REFERENCES

[1] M. Fowler and J. Lewis, “Microservices,” 2014. [Online]. Available:
http://martinfowler.com/articles/microservices.html

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and Tomor-
row. Cham: Springer International Publishing, 2017, pp. 195–216.

[3] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[4] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microser-
vice Architecture: Aligning Principles, Practices, and Culture, 1st ed.
O’Reilly Media, Inc., 2016.

[5] M. Villamizar, O. Garcs, L. Ochoa, H. Castro, L. Salamanca, M. Verano,
R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang, “Infras-
tructure cost comparison of running web applications in the cloud using
aws lambda and monolithic and microservice architectures,” in 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 179–182.

[6] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[7] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Softw., vol. 33, no. 3, pp. 42–52, May 2016.

[8] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for
extracting microservices from monolithic enterprise systems,” CoRR,
vol. abs/1605.03175, 2016.

[9] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: An experience report from the
banking domain,” IEEE Software, vol. 35, no. 3, pp. 50–55, May 2018.

[10] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49, May
2018.

[11] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of app churn on
app success and stackoverflow discussions,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), March 2015, pp. 321–330.

[12] C. Rosen and E. Shihab, “What are mobile developers asking about? A
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, jun 2016.

[13] M. Rahman, “Mitigating information disclosure attacks in the cloud by
blocking invalid user and figure out problems to solve ddos by analyzing
stackoverflow questions,” in 2017 2nd International Conference on
Electrical Electronic Engineering (ICEEE), Dec 2017, pp. 1–4.

[14] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Architectural
knowledge for technology decisions in developer communities: An
exploratory study with stackoverflow,” in 2016 13th Working IEEE/IFIP
Conference on Software Architecture (WICSA), April 2016, pp. 128–133.

[15] S. A. Chowdhury and A. Hindle, “Mining stackoverflow to filter out
off-topic irc discussion,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, May 2015, pp. 422–425.

[16] StackOverflow. Stackoverflow’s privileges. Accessed: 2019-01-04.
[Online]. Available: https://stackoverflow.com/help/privileges

[17] A. Bandeira, C. Alberto, M. Paixao, and P. H. Maia. Replication
package and supporting webpage for the paper: We need to talk
about microservices. [Online]. Available: https://alanpbandeira.github.
io/stackoverservices/

[18] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the origin,
evolution, and usage of stack overflow code snippets,” in Proceedings
of the 16th International Conference on Mining Software Repositories
(MSR 2019), 2019.

[19] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov,
“Using and asking: Apis used in the android market and asked about
in stackoverflow,” in International Conference on Social Informatics.
Springer, 2013, pp. 405–418.

[20] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider,
“Mining duplicate questions in stack overflow,” in Proceedings of the
13th International Workshop on Mining Software Repositories - MSR
’16. New York, New York, USA: ACM Press, 2016, pp. 402–412.

[21] S. W. Thomas, A. E. Hassan, and D. Blostein, “Mining Unstruc-
tured Software Repositories,” in Evolving Software Systems, T. Mens,
A. Serebrenik, and A. Cleve, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 139–162.

[22] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software
Engineering, vol. 21, no. 5, pp. 1843–1919, oct 2016.

[23] I. Brigadir. Collection of english stop words. Accessed: 2019-01-04.
[Online]. Available: https://github.com/igorbrigadir/stopwords

[24] spaCy. spacy: Industrial-strength nlp. Accessed: 2019-01-04. [Online].
Available: https://spacy.io/

[25] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[26] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[27] T. Erl, Service-Oriented Architecture: A Field Guide to Integrating XML
and Web Services. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2004.

[28] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 301–310, 2017.

[29] M. Szpuszta and S. Vaitinadin. Microsoft azure - fault tolerance
pitfalls and resolutions in the cloud. Accessed: 2019-01-04. [Online].
Available: https://msdn.microsoft.com/en-us/magazine/mt422582.aspx

[30] J. Barr, A. Narin, and J. Varia, “Building fault tolerant applications on
aws,” Amazon, Tech. Rep., 2011.

[31] A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan, M. Arnold, and I. Baldini,
“CanaryAdvisor: a statistical-based tool for canary testing (demo),” in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis - ISSTA 2015. New York, New York, USA: ACM Press,
2015, pp. 418–422.

[32] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger, “Performance Engineering for
Microservices,” in Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion - ICPE ’17 Com-
panion. New York, New York, USA: ACM Press, 2017, pp. 223–226.

[33] D. Sato. Canaryrelease. Accessed: 2019-01-04. [Online]. Available:
https://martinfowler.com/bliki/CanaryRelease.html

[34] M. Fowler. Bluegreendeployment. Accessed: 2019-01-04. [Online].
Available: https://martinfowler.com/bliki/BlueGreenDeployment.html

[35] Canalys. Cloud marketshare q4 2018 and full year 2018. Accessed:
2019-01-04. [Online]. Available: https://www.canalys.com/newsroom/
cloud-market-share-q4-2018-and-full-year-2018


